TITLE
THE NUMERICAL SOLUTION OF THE ASYMPTOTIC EQUATIONS OF TRAILING EDGE FLOW

AUTHOR
Charles E. Jobe

PERFORMING ORGANIZATION NAME AND ADDRESS
Air Force Flight Dynamics Laboratory /FDM
Air Force Systems Command
Wright-Patterson Air Force Base, Ohio 45433

MONITORING AGENCY NAME AND ADDRESS (If different from above)

APPROVAL FOR PUBLIC RELEASE

DISTRIBUTION STATEMENT (of the report)
Unclassified

SUPPLEMENTARY NOTES
This report is a revision of the author's Ph.D. dissertation which was presented in the Graduate School of The Ohio State University in December 1973.

ABSTRACT
According to Stewartson and to Messiter, the flow near the trailing edge of a flat plate of length L has a limit structure for Reynolds number R∞ consisting of three layers over a distance O(LR^3/4) from the trailing edge: the inner layer of thickness O(LR^-1/8) in which the usual boundary-layer equations apply; an intermediate layer of thickness O(LR^-1/2) in which simplified inviscid equations hold, and the outer layer of thickness O(LR^-3/8) in which the full inviscid equations hold. These asymptotic equations have been solved numerically using a...
Cauchy-Integral algorithm for the outer layer and a modified Crank-Nicholson boundary-layer program for the inner layer. An interactive procedure was used to account for the pressure-displacement thickness interaction between the layers. Results of the computation compare well with experimental data and with the numerical results of Dennis.
FOREWORD

This effort was performed under AFFDL Project 1476, Task 147601, Work Unit, 14760112 entitled "Drag Due to Separated Flow." The work, which is a necessary step in the study of the structure of viscous flow near airfoil trailing edges, was conducted during the period July 1970 through December 1973. This document was submitted on 9 January 1974.

This report is a revision of the author's Ph.D. dissertation which was presented in the Graduate School of The Ohio State University in December 1973. The author wishes to gratefully acknowledge the patience, guidance, and encouragement of his adviser, Professor Odus R. Burggraf. The author is also indebted to Professor K. Stewartson for several enlightening discussions and considerable encouragement.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II THE TRIPLE DECK ANALYSIS</td>
<td>8</td>
</tr>
<tr>
<td>III THE NUMERICAL PROCEDURE</td>
<td>24</td>
</tr>
<tr>
<td>1. Input Data</td>
<td>26</td>
</tr>
<tr>
<td>2. The Main Program</td>
<td>30</td>
</tr>
<tr>
<td>3. The Hilbert Transformation</td>
<td>32</td>
</tr>
<tr>
<td>4. The Boundary-layer Subroutine</td>
<td>36</td>
</tr>
<tr>
<td>IV THE RESULTS</td>
<td>40</td>
</tr>
<tr>
<td>V CONCLUSIONS</td>
<td>72</td>
</tr>
<tr>
<td>APPENDIX</td>
<td></td>
</tr>
<tr>
<td>I Error Analyses of the Numerical Procedure</td>
<td>77</td>
</tr>
<tr>
<td>II The Asymptotic Behavior of the Numerical Results</td>
<td>87</td>
</tr>
<tr>
<td>III The Boundary-Layer Difference Equations</td>
<td>99</td>
</tr>
</tbody>
</table>

BIBLIOGRAPHY | 104 |

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The Triple-Deck Flow Structure</td>
<td>9</td>
</tr>
<tr>
<td>2. A Flow Chart of the Main Program</td>
<td>25</td>
</tr>
<tr>
<td>3. Initial Velocity Profile at X = -6</td>
<td>27</td>
</tr>
<tr>
<td>4. Initial Estimate for the Displacement Thickness</td>
<td>29</td>
</tr>
<tr>
<td>5. Skin Friction near the Trailing Edge</td>
<td>41</td>
</tr>
<tr>
<td>6. Drag versus Reynolds Number - A Comparison of Theory and Experiment</td>
<td>47</td>
</tr>
<tr>
<td>7. Induced Pressure Distribution</td>
<td>48</td>
</tr>
<tr>
<td>8. A Comparison of the Induced Pressure Distribution with the Results of Schneider & Denny at R = 105</td>
<td>49</td>
</tr>
<tr>
<td>9. Lower Deck Displacement Function, A(X)</td>
<td>51</td>
</tr>
<tr>
<td>10. Slope of the Displacement Function, A'(X)</td>
<td>53</td>
</tr>
<tr>
<td>11. Pressure-Displacement Function Error Analysis</td>
<td>55</td>
</tr>
<tr>
<td>12. The Centerline Velocity</td>
<td>56</td>
</tr>
<tr>
<td>13. The Centerline Velocity near X = 0</td>
<td>68</td>
</tr>
<tr>
<td>14. The Pressure near X = 0</td>
<td>59</td>
</tr>
<tr>
<td>15. The Asymptotic Behavior: b_1 for X = 6, (\Delta X = 0.05)</td>
<td>61</td>
</tr>
<tr>
<td>16. The Asymptotic Behavior: b_1 for X = 6, (\Delta X = 0.025)</td>
<td>62</td>
</tr>
<tr>
<td>17. The Asymptotic Behavior: b_1 for X = 12, (\Delta X = 0.05)</td>
<td>63</td>
</tr>
<tr>
<td>18. A Comparison of the Lower Deck and the Goldstein Wake Velocity Profiles</td>
<td>66</td>
</tr>
<tr>
<td>19. Velocity Perturbations on the Plate</td>
<td>68</td>
</tr>
<tr>
<td>20. Velocity Perturbations at the Trailing Edge</td>
<td>69</td>
</tr>
<tr>
<td>21. Velocity Perturbations in the Inner Wake</td>
<td>70</td>
</tr>
<tr>
<td>22. Velocity Profiles in the Inner Wake</td>
<td>71</td>
</tr>
<tr>
<td>23. A Summary of the Numerical Results</td>
<td>73</td>
</tr>
<tr>
<td>FIGURE</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>24.</td>
<td>A Comparison of Initial Velocity Profiles at $X = -6$</td>
</tr>
<tr>
<td>25.</td>
<td>A Comparison of the Skin Friction Resulting from the Initial Velocity Profiles</td>
</tr>
<tr>
<td>26.</td>
<td>Cauchy Integral Error Analysis</td>
</tr>
<tr>
<td>27.</td>
<td>Hilbert Transformation Error Analysis</td>
</tr>
<tr>
<td>28.</td>
<td>Asymptotic Behavior: $Z_e = 6$, Shallow Velocity Profile</td>
</tr>
<tr>
<td>29.</td>
<td>Asymptotic Behavior: $Z_e = 6$, Revised Velocity Profile</td>
</tr>
<tr>
<td>30.</td>
<td>Asymptotic Behavior: $Z_e = 8$, Revised Velocity Profile</td>
</tr>
<tr>
<td>31.</td>
<td>Asymptotic Behavior: $Z_e = 8$, The Pressure Shift</td>
</tr>
<tr>
<td>32.</td>
<td>Asymptotic Behavior: $Z_e = 9$, Second-Order Terms</td>
</tr>
<tr>
<td>33.</td>
<td>Asymptotic Behavior: $Z_e = 9$, Second-Order Terms</td>
</tr>
<tr>
<td>34.</td>
<td>Asymptotic Behavior: $Z_e = 9$, Centerline Boundary Condition</td>
</tr>
<tr>
<td>35.</td>
<td>A Comparison of the Centerline Velocity for Goldstein's Inner Wake</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Drag Comparison with Numerical Data Flat Plate Drag</td>
<td>44</td>
</tr>
<tr>
<td>2. Drag Comparison with Experimental Data</td>
<td>45</td>
</tr>
<tr>
<td>3. The Numerical Results</td>
<td>74</td>
</tr>
<tr>
<td>4. The Numerical Solution of</td>
<td>79</td>
</tr>
<tr>
<td>(F_1''' - 18n^2 F_1'' - 36(nF_1' - F_1) = -1.0330)</td>
<td></td>
</tr>
</tbody>
</table>
SECTION I
INTRODUCTION

The quest for the second and higher approximations to the laminar boundary layer over a finite flat plate immersed in an incompressible viscous fluid has been accompanied by considerable controversy. It has been and is the cause of extensive analytical and numerical efforts. The controversy arose anew about 1969 when Stewartson (1969), and, separately, Messiter (1970), derived a rational, consistent expansion procedure to describe the neighborhood of the trailing edge. Their analyses predict that the second order term in the Reynolds number expansion for the drag of the plate is $O(R^{-7/8})$. The Reynolds number is based on the plate length, L, freestream velocity, U_∞, and kinematic viscosity, ν. A numerical solution to the fundamental problem of the trailing edge is required to determine the multiplicative constant appearing in this term.

It is the purpose of this report to present the results of numerical computations which clearly demonstrate that a physically acceptable numerical solution to the fundamental problem of the trailing edge exists and determines the constants which are required to complete Stewartson's (1969) analysis.

The controversy concerns the streamwise extent of the region influenced by the change in boundary conditions at the trailing edge. As pointed out by all the current authors concerned with this problem, the assumptions on which the boundary-layer equations are based fail in a neighborhood of the trailing edge of $O(LR^{-3/4})$. The Navier-Stokes

1

Approved for Public Release
equations must be applied in this region but its relevance is not the cause for the controversy. If this $O(LR^{-3/4})$ region were the entire streamwise extent of the influence of the trailing edge, as contended by some authors, the second-order term in the drag equation is $O(R^{-1})$. As shown by Imai (1957), the $O(LR^{-3/4})$ region contributes a still higher-order term, $O(R^{-5/4})$, to the drag equation. However, the basic hypothesis of the triple-deck analyses of Stewartson (1969) and Hessiter (1970) that leads to a consistent description of the flow field is that the streamwise region influenced by the trailing edge is $O(LR^{-3/8})$. This larger region produces a term of $O(R^{-7/8})$ in the finite flat plate drag equation; thus it intervenes to become second-order in the expansion of Imai (1957). This larger region also produces a term $O(R^{-1})$, as well as higher fractional-order terms, that will modify the constant derived by Imai (1957) in his consideration of the displacement effect of the boundary layer over the semi-infinite flat plate using a momentum balance applied on a large circle centered on the leading edge. A review of Imai's analysis and several additional analyses based on inverse half-power Reynolds number expansions, as well as the additional controversy concerning the multiplicative constant which appears in the R^{-1} term, are contained in Van Dyke's (1964) book. The various values of the constant are: 4.12 (Kuo (1953)), 2.36 (Imai (1957)), and 5.3 (Van Dyke (1964)). Van Dyke proposes that the trailing-edge region can contribute only a third-order term, proportional to $R^{-3/2}$, to the drag equation since it is sheltered by a relatively thick boundary layer, whereas the leading edge is exposed to the freestream.

The controversy is resolved in this report by a numerical solution to the fundamental problem of the trailing edge in the form of a boundary-layer equation coupled to a Cauchy integral through the boundary condition at the outer edge. The numerical integration of the skin friction completely determines, to second-order, the drag on the plate. Thus

\[
C_d = \frac{D_{1/2}}{\mu L} = \frac{1.388}{R^{1/2}} \cdot \frac{d_2}{R^{1/4}} + \ldots
\]

(1)

in which the leading term comes from Blasius' (1908) solution to the boundary-layer equations, and the numerical factor is that determined by Goldstein (1930), who elucidated the double structure of the near wake and, in the same paper, used the notion of matched asymptotic expansions. In the above equation, \(D_{1/2}\) is the drag caused by one side of the plate and \(\mu\) is the constant density of the flow. In our study the constant \(d_2\) was found to be 2.694. The drag predicted by Equation 1 with this value of \(d_2\) has been compared with the drag from the numerical solutions to the Navier-Stokes equations of Dennis (1973), Dennis and Chang (1969), and Dennis and Dunwoody (1966). This comparison has confirmed the validity of Equation 1 for a wider range of Reynolds numbers than could be expected. The present results are only eight and one-half percent high at \(R = 11\). A comparison with the oil flow data of Janour (1951) has a mean error of 1.5 percent, a maximum error of 7.5 percent, and a root mean square error of 3.5 percent for Reynolds numbers from 12 to 2335. This equation is the most accurate correlation of Janour's data known.

Detailed comparisons of the wake centerline velocity and overall pressure distribution are in reasonable agreement with the data of Schneider and Denny (1971) for their single Reynolds number of 10^5. Their method of solution used a separate numerical method in each of three regions. The pressure-displacement thickness in an outer, potential region was obtained by employing a source distribution of appropriate strength on the displacement thickness such that the flow normal to the displacement surface is zero. An implicit Crank-Nicholson type difference analogue was used to solve the boundary-layer equations in a transformed coordinate system which magnified the trailing-edge region. The second-order boundary-layer solution was obtained by manually constructing succeeding iterations using the transformed boundary-layer equations to obtain the displacement thickness which was input to the potential flow program to obtain improved values of the pressure. The boundary-layer solution provided the boundary conditions for the third, innermost region in which the full Navier-Stokes equations were solved by an integral averaging method. Schneider and Denny (1971) conclude that their Navier-Stokes solution appears to match their second-order boundary-layer solution on a circle of radius about $L R^{-3/4}$ for $R = 10^5$.

Dennis (1973) has obtained numerical solutions to the Navier-Stokes equations in elliptic coordinates for the finite flat plate. By fitting his skin friction results at $R = 40, 100$, and 200 he finds a larger trailing-edge region of influence that scales with $L R^{-3/8}$, in agreement with Stewartson (1969) andMessiter (1970).

Plotkin and Flugge-Lotz (1968), using a numerical technique to solve the Navier-Stokes equations in boundary-layer variables, also have found

the influence of the trailing edge to extend much farther than $L R^{-3/4}$ in the streamwise direction. They attempt to find an improved first approximation to the solution in a region approximately centered on the trailing edge, thus the displacement thickness effect of the boundary layer is neglected. As pointed out by several authors, their grid size is larger than $L R^{-3/4}$; it is not, however, larger than $L R^{-3/8}$. Since their problem is not the problem considered here, due to their neglect of the displacement thickness effect, detailed comparisons would not be valid. Qualitatively their results for the pressure, wake centerline velocity, and skin friction are in agreement with the present results.

The relevance of the $O(L R^{-3/8})$ scaling is implicit in the coordinate straining of Goldberg and Cheng (1961) and is a consistent limit for the Navier-Stokes equations as shown by Messiter (1970). Goldberg and Cheng (1961), however, find the region of upstream influence of the trailing edge is of $O(L R^{-1/2})$ by the coordinate straining method and of $O(L R^{-1})$ by their parabolic coordinate solution. They conclude that neither approach is likely to be correct since the estimates differ by $O(L R^{-1/2})$.

The results of Talke and Berger (1970) are, indeed, difficult to reconcile with the present results. Talke and Berger (1970) have employed the method of series truncation (Van Dyke (1964)) to ascertain that the trailing edge influences an elliptic region of $O(L R^{-3/4})$. The boundary conditions in the near wake suggest an expansion for the stream function which is substituted into the Navier-Stokes equations expressed in parabolic coordinates and truncated at one or two terms. The Reynolds number for each integral curve of the resulting fourth-order ordinary differential equation must be determined by numerically matching, i.e.,

Approved for Public Release

5
patching, to the Goldstein (1930) near wake centerline velocity, either approximately, or exactly. The upstream influence of the trailing edge is then determined, for the first truncation, by equating the resulting skin friction to the Blasius skin friction to determine the point at which the curves coincide. This procedure is not possible for the second truncation since the minimum skin friction is always larger than the Blasius value (or the value at the triple-deck trailing edge). Therefore, it is assumed that the point of minimum skin friction determines the upstream extent of the trailing edge region for the second truncation.

From their results it can be shown that the downstream extent of the region of influence varies from $R^{-0.43}$ for $R = 274$, to $R^{-0.62}$ for $R = 55,600$, as determined by the streamwise location at which the numerical solutions are numerically matched to the Goldstein wake; while the upstream influence is, to a remarkable precision, $R^{-0.75}$. The first truncation predicts a skin friction which, apparently, becomes smaller than the Blasius value and the second truncation predicts a skin friction considerably higher than the Blasius value. As the authors suggest, a numerical solution of the third truncation might be useful in numerically matching the skin friction if their sequence of truncations is convergent. It may also be of value in reconciling the anomalous behavior since the larger value of the skin friction predicted by the triple-deck analysis is now available.

The present method of solution utilizes the triple-deck coordinate system of Stewartson (1969) to remove the influence of Reynolds number from the trailing-edge problem. The boundary-layer equations of the lower deck are solved by an implicit Crank-Nicholson type difference analogue and an iteration procedure for the pressure gradient which is related to the displacement function of the potential upper deck by a Cauchy integral. Thus the boundary-layer equations are used to determine the pressure from the displacement function and the Cauchy integral of linear airfoil theory determines a new displacement function from the pressure, a reverse of the boundary layer potential flow iteration procedure of Schneider and Denny (1971). The present iterative method is entirely automated and convergence is attained when the displacement
function differs from its previous iteration by less than 10^{-4} at each streamwise location. This iterative method eliminates any need for numerical differentiation. Interpolation is not necessary due to the use of a single coordinate system for both the boundary layer and potential flow calculations.

The use of the linearized boundary condition and Cauchy integral to compute the pressure-displacement function relationship in the outer layer is justified to first order since the normal velocity is $O(R^{-1/4})$ and the streamline slopes remain small compared to unity. This point has been reiterated by Messiter and Stewartson (1972) and Denny (1972).

SECTION II
THE TRIPLE-DECK ANALYSIS

The triple-deck analysis, necessitated by the change in boundary condition at the trailing edge, was applied to the finite flat plate aligned with an incompressible freestream by Stewartson (1969) and Mesiter (1970). To the reader who is familiar with Stewartson's paper, this section is a summary of his analysis with minor corrections included here for completeness. The triple-deck and other multi-structured boundary-layer analysis methods have subsequently been applied to many separating flows. A complete review of this subject is forthcoming, Stewartson (1974).

As shown on Figure 1, the triple-deck region intervenes between the region of validity of the Blasius (1908) solution and the region of validity of the Goldstein (1930) wake solution. Its purpose is to remove the discontinuity in the vertical velocity of the wake solution as the trailing edge is approached from the downstream side. The lower deck corresponds to Goldstein's inner viscous wake which arises from the change in boundary conditions at the trailing edge. The boundary-layer equations apply in the lower deck and the upstream influence of the wake is not permitted due to the parabolic nature of the boundary-layer equations. The main deck corresponds to Goldstein's essentially inviscid outer wake which is the inviscid continuation of the Blasius solution. The upper deck is additional to the Goldstein solution and is required to account for the displacement effect of the wake. The flow in the upper deck is potential and permits the upstream influence of the wake through the elliptic nature of the governing equations. Thus the upstream influence of the wake is felt in the parabolic lower deck through the elliptic nature of the upper deck.

Figure 1. The Triple-Deck Flow Structure
The ensuing notation is that of Stewartson (1969) with the two exceptions that R is used for Re and L replaces its lower case script version. Following Stewartson's analysis, we define a physical, rectangular Cartesian coordinate system, Ox'y'z', centered at the trailing edge with velocity components u^* and v^*; u^* and x^* to be aligned with the freestream, U_∞, and y^* and v^* which are normal to the freestream and the plate extending a distance L upstream in the negative x'-direction. Additionally, p^* is the pressure and e is the inverse one eighth power of the Reynolds number.

The streamwise extent of the triple-deck, or intermediate region between the region of the Blasius (1908) solution and the Goldstein (1930) wake region is $x^* = O(Lc^3)$. Various length scales for this intermediate region may be envisioned and tried; however, the Lc^3 scale has been demonstrated to lead to a consistent description of the flow field in the trailing-edge region. The upper deck, of length $O(Lc^5)$ in the y^*-direction, protrudes above the conventional boundary layer and wake to account for the displacement thickness perturbation induced by the lower deck, where $y^* = O(Lc^6)$. The lower deck is required to reduce the slip velocity at the lower edge of the main deck to its value on the plate, zero. The main deck, which is essentially inviscid and relatively passive, is $O(Lc^4)$ in y^* and must match the upper and lower decks as well as the streamwise component of the Blasius solution upstream and the Goldstein outer wake downstream of the trailing edge.

We now define dependent and independent variables which emphasize the physics of the flow field in the various layers or decks and proceed to set up the boundary conditions to which the expansions must match. Define x, u, v, and p by:

$$x^* = e^{3Lx}, u^* = u_{\infty}, v^* = v_{\infty}, p^* = p_{\infty} + pu_{\infty}^2$$

(2)

in all three decks and Y, y, and z by

$$y^* = e^{3Ly}, y^* = e^{3Lx}, y^* = e^{3Lz}$$

(3)

in the upper, main, and lower decks, respectively.
Upstream of the trailing edge, \(x = \cdots\) and the expansions in the various decks must match the streamwise component of the Blasius solution, \(U_0(y)\), where \(U_0(y) = \psi_0'(y)\) and \(\psi_0\) satisfies the conventional Blasius equation

\[
\psi_0'' + \psi_0 \psi_0' = 0, \quad \psi_0(0) = \psi_0'(0) = 0, \quad \psi_0'(\infty) = 1
\]

with \(y\) as the independent variable. The upstream boundary conditions for the main deck, \(y\) fixed, are

\[
u \to U_0(y) + O(\epsilon^0), \quad v \to O(\epsilon^0) \quad \text{and} \quad p \to O(\epsilon^0),
\]

the \(c^3\) term in \(u\) arising because the full Blasius solution depends on the square root of \(1 + x^*\) as well as \(y^*\). Above the entire triple-deck, \(y = \cdots\), \(x\) is fixed, and the perturbations due to the overall displacement thickness of the boundary layer are \(O(\epsilon^4)\) and

\[
u \to 1 + O(\epsilon^4), \quad v \to O(\epsilon^4), \quad p \to O(\epsilon^4)
\]

This boundary condition will necessitate the introduction of the upper deck.

Proceeding along the centerline \(y = 0\) the boundary conditions are

\[u = v = 0, \text{ if } x < 0, \quad \text{and} \quad v = \partial u / \partial y = 0, \text{ if } x > 0\]

which will necessitate the introduction of the lower deck when \(x < 0\).

The three-layered structure is also evident in the boundary conditions downstream, i.e., the near wake. The double-structure of the near wake was first elucidated by Goldstein (1930), who assumed the pressure to be constant throughout the trailing edge region and that a Taylor series expansion of \(U_0(y)\) remains valid to the trailing edge, i.e.,

\[
U_0(y) = a_1 y + a_4 y^4 + a_7 y^7 + \cdots
\]

where

\[a_1 = 0.3321 = \lambda.
\]
Assuming an expansion of the form

\[u = \frac{1}{3} \left(\frac{x + \eta^*}{4L} \right)^{1/3} f_0(\eta^*) + \frac{1}{3} \left(\frac{x + \eta^*}{4L} \right)^{2/3} f_1(\eta^*) + \cdots \]

(10)

for the inner wake, he found \(f_0 \) must satisfy

\[f_0^{(0)} + 2f_0^{(1)} - f_0^{(1)} = 0, \quad f_0^{(0)}(0) = f_0^{(1)} = 0, \quad f_0^{(0)} \eta^* = 0 \rightarrow 184, \quad \text{as} \ \eta^* \rightarrow 0 \]

(11)

where

\[\eta^* = y^*/12^* (2L^2 \eta^* /12^* \eta^* = 3y^* (2x^* /12^* = z^*/3(2x^*/12^* \eta^* \]

(12)

Examining the structure of Equation 10 for large \(\eta^* \), Goldstein found that in the outer wake \(u \) may be expanded in the series

\[u = U_0(y) + \frac{x + \eta^*}{4L} U_1(y) + \left(\frac{x + \eta^*}{4L} \right)^{2/3} U_2(y) + \cdots \]

(13)

where each of the \(U_n \) values is related to a derivative of \(U_0 \):

\[U_1(y) = s_1 \frac{du_0}{dy}, \quad U_2(y) = \frac{1}{2} s_1 \frac{d^2 u_0}{dy^2} \]

(14)

e tc., where \(s_1 = 2.0448 \).

The downstream boundary conditions \(x = \infty \) for the triple-deck are: \(v = O(\epsilon^4) \) and \(\rho = O(\epsilon^2) \) in all three decks while

\[u \rightarrow \frac{x}{3} \left(\frac{x}{4L} \right)^{1/3} f_0(\eta^*) + O(\epsilon^4) \]

when \(\eta^* \) is finite,

\[u \rightarrow U_0(y) + \epsilon^{1/3} s_1 \frac{du_0}{dy} + O(\epsilon^2) \]

(16)

when \(y \) is finite, and

\[u \rightarrow 1 + O(\epsilon^4) \]

(17)

when \(x \) is finite.

On the plate, the main deck will require the introduction of the upper deck to satisfy the boundary condition, Equation 6, and similarly, the lower deck is required to satisfy Equation 7. To see this, we substitute the expansions
\[u(x,y) = u_0(y) + \varepsilon u_1(x,y) + \varepsilon^2 u_2(x,y) + \cdots \] (18)

\[v(x,y) = \varepsilon^2 v_1(x,y) + \varepsilon^3 v_2(x,y) + \cdots \] (19)

\[p(x,y) = \varepsilon p_0(x,y) + \varepsilon^2 p_2(x,y) + \cdots \] (20)

\[\text{into the Navier-Stokes equations in } x \text{ and } y. \]

From the power \(\varepsilon^3 \): \(\partial p_1 / \partial y = 0 \).

\[\varepsilon^2: \quad \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \] (21)

\[u_0 \frac{\partial u_0}{\partial x} + v_1 \frac{\partial u_0}{\partial y} = - \frac{\partial p_1}{\partial x} \]

\[0 = \frac{\partial p_2}{\partial y} \]

\[\varepsilon^{-1}: \quad \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \] (22)

\[u_0 \frac{\partial u_0}{\partial x} + v_2 \frac{\partial u_0}{\partial y} + u_1 \frac{\partial u_1}{\partial x} + v_1 \frac{\partial u_1}{\partial y} = - \frac{\partial p_2}{\partial x} \]

In order to enforce a consistent matching between the upper and main decks, it is necessary to set

\[p_1 = 0. \] (23)

The validity of this assumption will be demonstrated by the self-consistency of the expansion. Otherwise, a physically unacceptable cause external to the triple-deck would drive the first-order perturbations, Equation 21. Alternatively, Messiter (1970) obtains the same result by expanding the pressure and stream function in terms of arbitrary gauge functions and determines the largest terms in the Navier-Stokes equations when the streamwise coordinate is stretched by an amount greater than \(R^{1/2} \).
The solution to Equations (21) is

\[u_i = A_1(x) \frac{du_0}{dy}, \quad v_i = -A_1'(x) U_0(y) \] \hspace{1cm} (24)

where

\[A_1(x) \rightarrow 0 \text{ as } x \rightarrow -\infty \] \hspace{1cm} (25)

and

\[x_i(x) = \frac{d_i}{2} \left(\frac{\gamma}{\rho} \right)^{1/2} \rightarrow 0 \text{ as } x \rightarrow -\infty \]

from the boundary conditions, Equations 5 and 16. As \(y \rightarrow -\infty, U_0(y) \rightarrow 1 \) and \(v_i = -A_1'(x) \), thus leading to the downward displacement effect on the upper deck.

Stewartson also obtains a solution for Equations 22; however, here it is only necessary to note that, since \(U_0'' \) and \(U_0''' \rightarrow 0 \) as \(y \rightarrow -\infty, U_2 \rightarrow p_2 \). Therefore, for \(y \rightarrow -\infty \), the main deck expansions have the form

\[u \rightarrow 1 - e^2 p_2(x) + O(e^3) \]

\[v \rightarrow - e^2 A_1'(x) + O(e^3) \] \hspace{1cm} (26)

\[p \rightarrow e^2 p_2(x) + O(e^3) \]

and cannot satisfy the boundary conditions given by Equation 6, necessitating the introduction of the upper deck.

The flow in the upper deck is inviscid and irrotational and \(x \) and \(Y \) are \(O(1) \). The appropriate expansions are:

\[u = 1 + e^2 U_2(x,Y) + e^3 U_3(x,Y) + \cdots \]

\[v = e^2 V_2(x,Y) + e^3 V_3(x,Y) + \cdots \] \hspace{1cm} (27)

\[p = e^2 P_2(x,Y) + e^3 P_3(x,Y) + \cdots \]

where the \(U_n \) and \(V_n \) are complex conjugates since the flow is potential and satisfies Laplace's equation. Matching with the main deck as \(y \rightarrow -\infty \) and \(Y \rightarrow 0 \) proceeds.
The pressure-displacement function relationship in the upper deck may be obtained using the properties of harmonic functions (Stewartson) or, equivalently, from linear airfoil theory (Messiter) as the skew-reciprocal Hilbert transformation

$$P_2(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{A_1'(y)}{y - x} \, dy$$

This equation and the assumption $p_1 = 0$ must be satisfied to accomplish the match between the potential upper deck and the essentially inviscid main deck.

The necessity for the lower deck becomes evident when the main deck expansions are examined for $y \to 0$. By substituting the Taylor series for $U_0(y)$ in Equation 8 and Equations 24 into Equations 18 and 19, and obtaining v_2 from Equation 22 as $y \to 0$

$$u = \left[\lambda_1 + O(y^1) \right] + e\left[\lambda_1A_1(x) + O(y^1) \right] + O(e^2) + \cdots$$

$$v = -e^2\left[\lambda_1A_1'(x) + O(y^1) \right] + e^2\left[\lambda_1A_1A_1' - \lambda^{-1} p_2'(x) \right] + \cdots,$$

and $u \to 0$ as $y \to 0$ as required by the no-slip boundary condition on the plate. To remedy this problem, the lower deck, where

$$u = e^3 \varphi_2(x, z) + e^2 \varphi_1(x, z) + \cdots$$

$$v = e^3 \varphi_2(x, z) + e^2 \varphi_1(x, z) + \cdots$$

$$w = e^3 \varphi_2(x, z) + e^2 \varphi_1(x, z) + \cdots$$

must be inserted. The conventional boundary-layer equations result when these expansions are substituted into the Navier-Stokes equations in x and z.

Approved for Public Release
\[\frac{\partial \mathcal{V}_1}{\partial x} + \frac{\partial \mathcal{V}_1}{\partial z} = 0 \]

\[\mathcal{V}_1 \frac{\partial \mathcal{V}_1}{\partial x} + \gamma_1 \frac{\partial \mathcal{V}_1}{\partial z} = -\frac{\partial \mathcal{V}_1}{\partial x} + \frac{\partial^2 \mathcal{V}_1}{\partial x^2} \]

\[\gamma_1 = 0 = \frac{\partial \mathcal{V}_1}{\partial z} \]

Since \(\gamma_1 \) is independent of \(z \),

\[\mathcal{V}_1(x,z) = p_0(x,0) = p_2(x) \] \(\ldots \) \((36) \)

The boundary conditions along \(z = 0 \) follow from Equation 7,

\[\mathcal{V}_1 = \mathcal{V}_1 = 0 \text{ if } x < 0, \mathcal{V}_1 + \frac{\partial \mathcal{V}_1}{\partial z} = 0 \text{ if } x > 0. \]

\((37) \)

Upstream, \(\mathcal{V}_1 \rightarrow \lambda z \) to match with the Blasius solution for small \(y \) as \(x \rightarrow -\infty \), while downstream \(x \rightarrow +\infty \) and

\[\mathcal{V}_1 \rightarrow \frac{1}{2} \left(\frac{X}{F} \right)^{1/3} \eta^* \] \(\ldots \) \((38) \)

to match with Equation 15, the Goldstein inner wake solution. As \(x \rightarrow +\infty \), the lower deck must match with the main deck as \(y \rightarrow 0 \) so

\[\mathcal{V}_1 - \lambda z \rightarrow \lambda A_1(x) \] \(\ldots \) \((39) \)

since \(f_0^* (\eta^*) = 18 \lambda \eta^* \) as \(\eta^* \rightarrow \infty \) from Goldstein’s (1930) solution.

The problem can now be reduced to a more universal form by scaling the variables to remove the constant \(\lambda \). The fundamental problem of the trailing edge results when the affine transformation

\[x = \lambda^{5/2} X, z = \lambda^{3/2} Z, \mathcal{V}_1 = \lambda^{1/2} U(x,Z) \]

\[\mathcal{V}_1 = \lambda^{5/2} V(X,Z), \eta^* = \lambda^{-1/3} \eta^*, f_0 = \lambda^{1/3} \eta_0(\eta) \] \(\ldots \) \((40) \)

is applied to the previous equations.
The problem is the existence of a physically acceptable solution of the boundary-layer equations

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial z} = 0, \quad u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial z} = -\frac{dp}{dx} + \frac{\partial^2 u}{\partial z^2}
\]

(41)

with boundary conditions

\[
\begin{align*}
U &= 0, \quad V = 0 \text{ on } Z = 0, \quad X < 0 \\
V &= 0, \quad \partial u / \partial z = 0 \text{ on } Z = 0, \quad X > 0 \\
U - Z &\rightarrow 0, \quad P &\rightarrow 0 \text{ as } X \rightarrow -\infty \\
U - Z - A(X) &\rightarrow 0 \text{ as } Z \rightarrow \infty \\
P &\rightarrow 0, \quad u - \frac{1}{3} \left(\frac{X_0}{4} \right)^{1/2} \eta - \frac{1}{3} \left(\frac{X_0}{4} \right)^{1/2} \eta' \rightarrow 0 \text{ as } X \rightarrow \infty
\end{align*}
\]

(42)

where \(P(X) \) and \(A(X) \) are related by the Hilbert integral

\[
P(X) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{A'(X_1)}{X - X_1} \, dx_1
\]

(43)

Furthermore from Equation 18 and the boundary conditions, Equations 5 and 16,

\[
A(X) \rightarrow 0 \text{ as } X \rightarrow -\infty, \quad A(X) \rightarrow 0.8920X^{1/3} \text{ as } X \rightarrow \infty
\]

(44)

and from Equations 15 and 40, \(\rho_0 \) satisfies the first-order Goldstein wake equation

\[
\begin{align*}
\rho_0''' + 2\rho_0'' - \rho_0' &= 0, \quad \rho_0(O) = \rho_0'(O) = 0 \\
\rho_0'''(O) &= 7.67/5, \quad \rho_0(\eta) \rightarrow 9 (1 + 0.2560 \eta) \text{ as } \eta \rightarrow \infty.
\end{align*}
\]

(45)

To solve this problem originally posed by Stewartson (1969) is the purpose of this report. The numerical computations reported in the succeeding chapters will demonstrate that the answer to this question is affirmative.
From the coordinate transformations, Equations 3 and 40, and the lower deck expansion, Equation 32, the skin friction is

$$\rho u_s \frac{\partial u_s}{\partial y} \bigg|_{y^+ = 0} = \frac{\rho u_s^2}{R^{1/2}} \left(\frac{\rho u_s}{R^{1/2}} \right)_y \left(\frac{\partial u}{\partial z} \right)_y - 1 \right) + O(R^{-5/4}) \tag{46}$$

where the first and last terms on the right-hand side are the Blasius value to $O(x^2)$. An integration along the plate produces the drag coefficient for one side of the plate

$$C_D = \frac{4\lambda}{R^{1/2}} + \frac{2}{\lambda^{1/4} R^{7/8}} \int_0^\infty \left(\frac{\partial u}{\partial z} \right)_y |_{y = 0} \, dx + O(R^{-1}). \tag{47}$$

The following numerical procedure has determined the value of the above integral, subsequently labeled β_1 by Stewartson (1974), to be 1.021.

Prior to proceeding to the numerical analysis it is necessary to determine the asymptotic structure of the velocity, pressure, and displacement thickness for $|X| = \infty$ for use in the Hilbert integral subprogram.

To determine the asymptotic structure of the pressure it is only necessary to note that $P(X)$ and $A'(X)$ are complex conjugates from the harmonic property of U_2 and V_2 in the upper deck. Thus

$$P(X) \sim -\frac{1.784}{3^{3/2} |X|^{2/3}} \quad \text{if } X < 0 \tag{48}$$

and

$$P(X) \sim -\frac{0.892}{3^{3/2} X^{2/3}} \quad \text{if } X > 0 \tag{49}$$

since

$$A'(X) \sim \frac{0.892}{3^{3/2} X^{7/6}} \quad \text{if } X > 0 \tag{50}$$
and

\[A'(x) = 0 \text{ if } x < 0 \]

(51)

from Equation 44. The leading term in \(A(x) \) when \(x \) is large and negative can be determined by substituting

\[u = z + 1.784 \left| x \right|^{-1} f'_1(\eta) + \cdots \]

(52)

\[v = -2.248 \left| x \right|^{-5/3} \left(2f'_1 + \eta f''_1 \right) + \cdots \]

(53)

into the boundary-layer equation with the result:

\[f'''_1 - 18(\eta)^2 f''_1 - 36(\eta)f'_1 - f_1 = -1.833 \]

(54)

\[f_1(0) = f'_1(0) = 0, f''_1(\eta) \to 0 \text{ as } \eta \to \infty, X \text{ large.} \]

(55)

The solution to Equation 54 may be represented in terms of the confluent hypergeometric function or its integral representation as shown by Messiter (1970) and Stewartson (1969). Here the solution was obtained numerically in order to obtain the initial velocity profile required to integrate the boundary-layer equation. The results are the same:

\[f''_1(0) = 0.6580, f'_1(\infty) = 0.1830 \]

so that when \(x \) is large and negative

\[\frac{\partial u}{\partial z} \bigg|_{z=0} = 14 \frac{0.3006}{|x|^{1/3}} + \cdots \]

(56)

\[A(x) = 0.3586 + \cdots \]

Similarly, when \(x \) is large and positive, the form of \(A(x) \) must be determined from the boundary-layer equations. On substituting the expansions

\[u = \frac{1}{2} \left(\frac{x}{\delta} \right)^{1/3} q'_0(\eta) + \frac{1}{2} \left(\frac{x}{\delta} \right)^{-n/3} q_n(\eta) + \cdots \]

(57)

\[v = -\frac{1}{6} \left(\frac{x}{\delta} \right)^{1/3} \left[2q'_0 - \eta q'_0 + \left(\frac{x}{\delta} \right)^{-n/3} (12-n)q_n - \eta q'_n \right] + \cdots \]

(58)
Also, to avoid a contradiction in the pressure expansion,
\[\gamma_0 = 10 \lambda_1 \eta \rightarrow 0 \quad \eta \rightarrow \infty. \]

The solution was found by Hakkinen and Rott (1965) and rechecked numerically here. Thus,
\[c_0(0) = 3(2 \lambda_1)^{2/3} (0.8991) \]
(71)

and
\[c_0 = \lambda_1^{4/3} [0.4089]. \]
(72)

Stewartson then reaches the following tentative conclusions which the ensuing numerical analysis will demonstrate to be quite accurate.

1. The skin friction is finite as \(X = 0 \) and \(\lambda_1 > 1 \).

2. \(U(X, 0) = 0.8991 \lambda_1^{2/3} X^{1/3} + 0(X^{2/3}). \)
(73)

3. \(P(X) = P_0 + P_1 X + O(X^2 \log(-X)) \)
when \(X < 0 \) and

4. \(P(X) P_0 + 0.6133 \lambda_1^{4/3} X^{2/3} + 0(X) \)
when \(X > 0 \),
(74)

where \(P_0 \) is a negative constant and \(P_1 \) is also a constant.

For the convenience of the reader, the constants have been determined by \(H^2 \)-extrapolation (Beckemach 1961) of the present numerical data to be \(\lambda_1 = 1.343 \), \(P_0 = -0.388 \), and \(P_1 = -0.278 \).

The match with the central region where x^* and y^* are $O(e^6)$ will not be undertaken here since yet another region where x^* and y^* are $O(e^4)$ intervenes and the elucidation of its properties will have to await further study. Its properties are not required for the determination of the largest perturbations which occur in the present $O(e^2)$ region. Throughout this analysis it has been tacitly assumed that $e_0 << 1$ or $R >> 1$; however, the data comparisons will show that the present theory is accurate for $R + 1$. This unexpected result also somewhat negates the requirement for higher-order terms.
SECTION III
THE NUMERICAL PROCEDURE

The computer program used in this study evolved from a boundary-layer program developed by Burggraf (1969). The essential elements of the final program will be described here. The details and the evolution of the program occupy towering columns of printer paper and over three years of analysis. All computations have been carried out on a CDC 6600 digital computer.

The main program consists of three main iteration loops as shown on Figure 2. Within this program, two subroutines are required. One subroutine, indicated by the upper large rectangle of Figure 2, iteratively computes the boundary-layer velocity profiles of the lower deck using an implicit Crank-Nicholson type of difference analogue. The other subroutine, indicated by the lower large rectangle of Figure 2, computes the Hilbert transformation of the pressure which is the slope of the displacement function, $A(x)$. As shown, the innermost of the three loops adjusts the pressure gradient at a given streamwise station until the boundary-layer subroutine produces a velocity profile with the desired $A(x)$. The middle loop provides the correct boundary conditions and advances the computation through its streamwise course and the outer loop compares displacement functions, $A(x)$, resulting from successive streamwise traverses through the entire lower deck until the solution is obtained. Discussion of the subroutines will be deferred until their relationship to the main program is delineated.

All computations have been performed in the x, z coordinate system of Equation 40. The streamwise interval must be symmetric about the trailing edge $x = 0$ and divided into an even number of equal increments of length Ax. Intervals extending from -3 to $+3$, -6 to $+6$, -9 to $+9$.

Figure 2: A Flow Chart of the Main Program

1. Compute $A(x)$, $B(x)$, and $C(x)$ from the boundary-layer equations for all x.

2. If $A(x)B(x)$ satisfy the boundary-layer equations and the Hilbert transformation, then $x = y_2$.

3. If $A(x)B(x)$ do not satisfy the boundary-layer equations, go to step 4.

4. Compute boundary-layer profiles $P(x)$, $V(x)$, and $W(x)$.

5. Input initial velocity profile V_i.

6. Compute initial profile V_i.

7. Advance the boundary condition $P = P_{ad} + TUA$.

8. If $A(x)B(x)$ satisfy the boundary-layer equations, then $x = y_2$.

9. If $A(x)B(x)$ do not satisfy the boundary-layer equations, go to step 4.
and -12 to +12 with $\Delta x = 0.1$, 0.05, 0.025, and 0.0125 have been employed to ensure the accuracy of the computations. The Z or normal coordinate direction is also divided into an even number of equal increments of length H. The thickness of the layer is limited by the computational time required and $Z_0 = 6, 8, 9$ have been used with increments $H = 0.1$ and 0.05. A finer grid or a thicker layer would required prohibitively long central processor time. The shortest run (20 minutes, 21,000 central memory locations) which produces reliable, accurate results was found to be the case where $-6 \leq X \leq 6, 0 \leq Z \leq 6$ with $\Delta X = 0.05$ and $H = 0.1$. All subsequent numerical investigations were performed to determine if various changes would improve the accuracy of the above case.

1. INPUT DATA

The boundary-layer equations are parabolic and require that the initial velocity profile and the boundary conditions along the streamwise edges are prescribed. The downstream velocity profile cannot be prescribed and serves as a check on the computations.

The initial velocity profile is required to initiate the boundary-layer computations during each cycle of the outer loop and ultimately affects the final solution. The initial velocity profile for X large and negative has been obtained for the various H step sizes by numerically integrating Equation 54 using Hamming's modified predictor-corrector method (Ralston and Wilf (1960)) and substituting the results into Equation 52. The velocity profile, magnified by the subtraction of the linear portion, is presented in Figure 3. It should be noted that as $Z \to 9$ the profile becomes vertical indicating that the boundary condition given by Equation 42 is not being enforced prematurely. The initial velocity profile has been checked by comparison with the velocity profile resulting from the computations initiated further upstream (see Appendix I).

The final set of input data required is an estimate for the displacement function, $A(X)$, or the pressure, $P(X)$. Either can be calculated from the other by the skew-reciprocal Hilbert transformation,
Figure 3. Initial Velocity Profile at $x = -6$
Equation 43. Both are required to start the three main loops as shown on Figure 2. Presumably, any reasonable guess would suffice; however, the closer the guess is to the final solution, the shorter is the running time required. Realizing this, a function of the form

\[A'(x) = \frac{C_1}{C_2^2 + x^2} + C_3x^{2/3} \exp(C_4x) \quad X \leq 0 \]

and

\[A'(x) = \frac{C_5}{C_6^2 + x^2} \frac{C_7x^{2/3}}{C_8 \times 4/75} \frac{C_9}{C_{10} + x^{2/3}} \quad X > 0 \]

was developed by modifying Messiter's first guess for the form of the slope of the displacement thickness to agree with the asymptotic behavior predicted by Equations 56 and 62. Messiter's values for the \(C_i \) were: \(C_1 = 0.327 \), \(C_2 = 1.142 \), \(C_3 = 0.584 \), \(C_4 = 3.06 \), \(C_5 = 0.624 \), \(C_6 = 1.580 \), \(C_7 = 0.297 \), and \(C_8 = 1.00 \). Messiter (1970) did not include the term containing \(C_9 \) and \(C_{10} \); thus effectively his \(C_9 = 0 \). Here \(C_1 = 0.3225 \), \(C_2 = 1.011 \), \(C_3 = -0.4511 \), \(C_4 = 1.500 \), \(C_5 = 0.6054 \), \(C_6 = 1.7921 \), \(C_7 = 0.2974 \), \(C_8 = 1.100 \), \(C_9 = 0.1328 \), and \(C_{10} = 1.000 \) were used.

An estimate for the pressure gradient is also required as initial data as shown on Figure 2. It is readily obtained from the numerical differentiation of the pressure resulting from the Hilbert transformation of Equation 76. Figure 2 also shows that one cycle through the middle loop generates the pressure required to satisfy the boundary-layer equations for the \(A(x) \) given by the numerical integration of Equation 76. Thus, at the end of one cycle of the program, one pressure curve satisfies the Hilbert transformation and the other satisfies the boundary-layer equations. The \(C_i \) given above for Equation 76 were determined by a comparison of the two pressure curves. Many divergent attempts were required to develop the final convergent numerical procedure. They were not entirely useless since each afforded the opportunity to compare the pressure curves and adjust the \(C_i \) using data from prior unsuccessful runs to determine the trends in the pressure curves with respect to the \(C_i \). Figure 4 compares the two pressure curves, the one that satisfies the
Figure 4. Initial Estimate for the Displacement Thickness
Hilbert transformation and the other that satisfies the boundary-layer equations. The comparison shows that the pressure curves are in fair agreement which indicates that Equation 76 provides a good starting approximation for the final iteration procedure.

The final iteration procedure has been shown to converge to the same solution, using either Messiter's form or the revised form of $A'(x)$ as input data. A 22 percent increase in computational time is required using Messiter's form of $A'(x)$ due to the additional iterations required for convergence, however.

2. THE MAIN PROGRAM

The main program, shown in Figure 2, is comprised of three nested loops which utilize the preceding input data to produce the solution. The middle loop performs the necessary bookkeeping tasks of selecting corresponding values for the streamwise station x, the pressure gradient $P'(x)$, the displacement thickness $A(x)$, and the previous velocity profile for the inner loop from the input data arrays.

The problem addressed by the inner loop of the main program is to solve the boundary-layer equations of the lower deck for the pressure gradient $P'(x)$ which will produce the requested edge velocity, U_e, and thereby $A(x) = U_e - Z_e$ with Z_e fixed. The method of solution is to compute the velocity profile using the iterative boundary-layer subroutine with the input $P'(x)$, determine the difference between the computed $A(x)$ and the requested $A(x)$, then use this difference to correct $P'(x)$ until the desired $A(x)$ is achieved to within 10^{-5}, the inner loop error tolerance. Symbolically, $P'(x)_{\text{new}} = P'(x)_{\text{old}} + \Delta A(x)/(dA/dP')$ where $dA/dP' = dU_e/dP'$. The problem therefore is reduced to the determination of dU_e/dP'. The solution was obtained originally by differentiating the boundary-layer equation with respect to $P'(x)$ to obtain a partial differential equation for dU_e/dP'. This equation was then numerically integrated across the boundary layer in order to obtain dU_e/dP'. This subroutine and the similar boundary-layer subroutine each had to be employed during each cycle through the inner loop. After several runs
and considerable data analysis, it was determined that the optimum \(\frac{du}{dp} \) is nearly 0.2 for all \(X \). The inner loop will converge more slowly if other values of \(\frac{du}{dp} \) are used. This discovery permitted the removal from the inner loop of the entire time-consuming subroutine and its attendant bookkeeping and reduced the run time to a manageable figure.

After several iterations, depending upon the streamwise station, the program exits from the inner loop with the \(P'(X) \) required to produce the requested \(A(X) \) to within .00001, and proceeds stepwise downstream via the middle loop. At the completion of the middle loop, the \(P'(X) \) required to produce the requested \(A(X) \) has been determined for all \(X \). To determine \(P(X) \) the pressure at the initial station must be found. The first-order term is known; from Equation 64, however, the second and fourth terms contain the unknown constants \(b_1 \) and \(d_1 \). The slope of the displacement function \(A(X) \) may be changed by shifting the entire pressure curve by a constant value since the Hilbert integral of a constant is another constant for the finite limits necessitated by computer storage.

Upstream \(A(X) \) is known to \(O(X^2) \) from Equation 56 and therefore \(A'(X) \) is known through \(O(X^2) \). Thus, the pressure curve can be computed using an initial pressure shifted such that \(A'(X) \) is correct through \(O(X^2) \) at the initial point. Alternatively, a value of \(b_1 \) could be obtained from the values of \(A(X) \) or \(U(X,0) \) from the previous iteration using Equation 62 or Equation 63 and then used to determine the initial pressure. Both methods were tried; the former was selected since the overall convergence was considerably improved without significantly affecting the final results.

Enforcing the correct asymptotic behavior of \(A'(X) \) effectively damps the oscillations which occur during the iteration cycles. A study of the effects of the pressure shift has been relegated to Appendix II. Thus, the pressure that satisfies the boundary-layer equations is generated in the middle loop.

The outer loop now computes the \(A'(X) \) corresponding to the new \(P(X) \) from the Hilbert transformation subroutine and, since the initial value of \(A(X) \) is known to \(O(X^2) \) from Equation 56, a new \(A(X) \) can be obtained by the trapezoidal rule. Comparing the new \(A(X) \) with the \(A(X) \) from the previous iteration determines if the program has converged. If not, \(A(X) \)
is replaced according to the formula

\[A(X) = KA(X)_{old} + (1-K)A(X)_{new} \]

(77)

and the outer loop re-initiates the streamwise traverse of the lower deck
until the differences between succeeding A(X) iterations is less than \(10^{-4}\).

It has been found by trial and error that \(K = 0.8\) will produce a
convergent iteration scheme. The outer loop will also converge with
\(K = 0.9\) or \(K = 0.7\) but \(K = 0.8\) is the best of these three values. The outer
loop will not converge if \(K = 0.5\) or \(K = 0.6\).

3. THE HILBERT TRANSFORMATION

The range of the Hilbert integral extends from negative infinity
to positive infinity. The integrand is singular at the point under
consideration. The functions \(A'(X)\) and \(P(X)\) are slowly approaching zero
at both ends of the range and \(P(X)\) must contain a zero within the range.
Additionally, it is highly desirable that the method use data at the same
streamwise locations as the input data and the boundary-layer subroutine
and return the pressure or displacement thickness results at the same
streamwise locations. This feature eliminates the requirement for time-
consuming data fitting and interpolation to adjust the output from the
subroutines to be compatible with the main program. All these require-
ments present a formidable numerical problem.

Fortunately, the asymptotic expansions for large \(|X|\) are known for
\(A(X)\), given by Equations 56 and 62, and \(P(X)\), given by Equations 64 and
65. The first two terms of these expansions have been integrated in
closed form using the substitution \(t^2 = \frac{1}{X}X\) and the method of partial
fractions (Equation 00, see below). Integrals of this form may also be
found in Petit Bois (1961). The limits extend from minus infinity to the
point where the numerical integration begins or from the point where the
numerical integration terminates to positive infinity, whichever is

New York: Dover.
Applicable. This effectively splits the range into three parts and reduces the doubly-infinite range Hilbert transformation to a finite range Cauchy integral plus closed form expressions which account for the infinite portions of the range where the respective expansions are applicable. The origin \(X = 0 \) must also be treated separately to ensure that the expressions do not contain functions or function arguments that tend to an undefined limit. The remaining finite-range Cauchy integral has been treated analytically by subtracting the singularity from the integrand (Davis and Rabinowitz (1967)).

We now consider the computation of

\[
A'(X) = -\frac{1}{\pi} \int_0^\infty \frac{P(X_j) dX_j}{X - X_j},
\]

(78)

the skew-reciprocal inverse of Equation 43 (Titchmarsh (1937)) to illustrate the method. Considering only the first terms of Equations 64 and 65 (the second terms may be reduced to the same form plus an elementary form by partial fractions), Equation 78 becomes

\[
A'(X) = \frac{dK}{\pi} \int_0^\infty \frac{dX_j}{(-X_j)^{3/2} (X - X_j)} + \frac{1}{\pi} \int_0^\infty \frac{P(X_j) dX_j}{X - X_j},
\]

(79)

where \(K = 0.892/\pi^{3/2} \) and the limits a and \(\infty \) are arbitrary, but large. The center portion of the integral is evaluated for each outer iteration using the following numerical integration procedure. It is evident that by considering various endpoints for the center integral, the accuracy of the approximations for the outer portions of the range may be assessed.

For \(X = 0 \) the integrand is \(x^{-5/3} \) \(dx \), which is readily integrated. More generally, the substitutions \(t^3 = x/X \) and \(t^3 = x/X \) when \(X < 0 \) and \(t^3 = -x/X \) and \(t^3 = X/x \) when \(X > 0 \) will reduce the integrands of the first and last integrals of Equation 79 to the form \(dt/(1 + t^3) \). The antiderivative has the form

\[
\frac{1}{3} \log \left(\frac{(t+1)^2}{t^2 + 1} \right) - \frac{1}{3} \arctan \frac{t^{3/2}}{2} + \frac{1}{3} \arctan \frac{t^{3/2}}{2} - \frac{1}{3} \log \left(\frac{t^2 + 1}{t^2 + 1} \right)
\]

which remains finite at the infinite limits.

The integrals of the asymptotic expansions of \(A'(X) \) are evaluated in a similar manner and the range is segmented in an identical manner to ensure compatibility with the main program.

The center portion of the integral is performed by subtracting the singularity, whether or not \(A'(X) \) or \(P(X) \) is in the integrand. The two subroutines differ in the analytic expressions which account for the infinite portions of the range.

The singularity in the integral is removed by subtraction, thus,

\[
\int_0^X \frac{P(X,t)dx}{x_i-x} = \int_0^X \frac{P(X,t)-P(X,0)dx}{x_i-x} + P(X) \int_0^X \frac{dx}{x_i-x}
\]

Splitting the range about the point \(X \), symbolically

\[
\int_0^X \frac{P(X,t)dx}{x_i-x} = \int_0^X + \int_X^X + \int_X^X \frac{P(X,t)-P(X,0)dx}{x_i-x} + P(X) \log \left| \frac{x-X}{a-X} \right|
\]

The first and third integrals are nonsingular and the trapezoidal rule has been employed for their evaluation. Assuming the integrand may be expanded in a Taylor series about \(X \) the center integral,
\[
\int_{X=\Delta X}^{X+\Delta X} \frac{P(x)-P(X)}{x^2} \, dx = 2\Delta X P'(X) + O(\Delta X^2)
\] (83)

which may be evaluated using any standard differencing method for \(P'(x)\).

In order to assess the accuracy of this numerical method a second method for treating Cauchy integrals (Collatz (1961)) was used along with three of Van Dyke's (1959) airfoil integrals. The results of the evaluation contained in Appendix 1, demonstrate that subtracting the singularity is the more accurate of these methods for treating Cauchy integrals.

When \(X\) is at either of the endpoints of the finite numerical range, \(a\) or \(b\), the above numerical procedures do not apply. The method of computing the integral at the endpoints consists of allowing the limits of the integrals of the asymptotic expansions to overlap the singularity at the endpoint by \(\Delta X\) and performing the remaining nonsingular numerical portion using the trapezoidal rule. Thus, the endpoint singularity is contained within the range of the integral of the asymptotic contribution. The procedure of merely ignoring the singularity within the range of a Cauchy integral has been justified by Mangler (1951).

The skew-reciprocal property of the Hilbert transformation permits the simultaneous error analysis of both the \(P(x)\) and \(A'(x)\) subroutines. One subroutine computes \(A'(x)\) from \(P(x)\) by assembling the appropriate expressions for the integrals of the asymptotic expansions of \(P(x)\) and the above numerical methods. Particular attention is required to ensure that each method is employed only within its range of validity, i.e., \(X = a, X < 0, X = 0, X > 0,\) or \(X = b\). The other subroutine computes the

Van Dyke, M., 1959. Second-order subsonic airfoil theory including edge effects. NACA Rept. 1274.

Approved for Public Release
pressure, \(P(x) \), from \(A'(x) \) by the same procedure utilizing the appropriate expressions resulting from the integrals of the asymptotic expansions of \(A'(x) \). Subsequent error analysis and programming checks were facilitated by the skew-reciprocal nature of the subprograms which were combined in a short flip-flop program. This error analysis, using Nessiter's (1970) form of \(A'(x) \), is contained in Appendix I. The error analysis of the present converged numerical results is reported in the following discussion of the results.

4. The Boundary-Layer Subroutine

This is the most standard of the subroutines in the entire program, yet the most crucial since it is required several times during each cycle of the innermost loop. This subroutine solves the boundary-layer equations of the lower deck, given by Equation 41 as

\[
\frac{\partial U}{\partial x} + \frac{\partial V}{\partial z} = 0, \quad U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial z} = -\frac{\partial P}{\partial x} + \frac{\partial^2 U}{\partial z^2},
\]

by an iterative procedure and thus constitutes another loop within the inner loop (See Figure 2) of the main program. The boundary conditions are given by Equation 42 as

\[
U = 0, \quad V = 0 \quad \text{at} \quad Z = 0, \quad X < 0,
\]

\[
V = 0, \quad \frac{\partial U}{\partial z} = 0 \quad \text{at} \quad Z = 0, \quad X > 0,
\]

and

\[
\frac{\partial U}{\partial z} \to 1 \quad \text{as} \quad Z \to \infty.
\]

The pressure gradient and the velocity profile at the previous streamwise station, \(X - \Delta X \), are required as input data to compute the velocity profile \(U(Z) \) at \(X \).

The introduction of the stream function and the application of the Crank-Nicholson differencing scheme to the boundary-layer momentum equation results in a matrix equation of the form

\[
\sum_j C_{ij} U_j = R_i.
\]
The C_{ij} matrix is tridiagonal with elements that contain the initially unknown U_j as shown in Appendix III. This matrix equation was solved by employing modified Gaussian elimination with back substitution (Richtmyer and Morton (1967)) and the continuity equation to update the stream function during each cycle. Convergence was achieved in 10-20 cycles when the successive velocity profiles were within the specified error tolerance, 10^{-6}. A more efficient boundary-layer subroutine using Newton iteration could have considerably reduced the computing time required, since this iteration is within the inner loop of the main program.

The boundary conditions are enforced by prescribing values for specific elements of the matrix or vectors. For example, with the representation of C_{ij} by its elements

$$R_j U_{j+1} + U_j + A_j U_{j-1} = R_j,$$ \hspace{1cm} (86)

the boundary condition $\partial U/\partial Z = 1$ requires that $A_j = -1$ and $R_j = -K$ at the outer edge. The boundary condition on the wake centerline, $\partial U/\partial Z = 0$, was enforced by requiring that $B_j = -1$ and either $R_j = 0$ or

$$R_j = -\frac{K^2}{2} \left[U_j \frac{\partial U_j}{\partial X} + P'(X) \right]$$ \hspace{1cm} (87)

The formulas for the A_j, B_j, and R_j are contained in Appendix III.

The effects of the higher-order form of the boundary condition given by Equation 87 and the accuracy of the subroutine in general were assessed by the momentum-integral method. Integrating Equation 41 across the layer,

$$\partial (U_0^2 \theta)/\partial X - \partial F(Z_0) - Z_0 \theta'(X) + 1 - \partial U/\partial Z \bigg|_{Z=0} = 0$$ \hspace{1cm} (88)

where \(\frac{\partial}{\partial \eta} \eta = - \frac{i}{\bar{Z}} \int \frac{U_{\infty}}{U_{\infty} - U_{\infty}} d\bar{Z}, \eta \) is the value of \(\eta \) at the outer edge, and \(F \) satisfies the continuity equation. Equation 88 is satisfied by the velocity profiles resulting from the boundary-layer subroutine to better than one percent over the majority of the streamwise extent of the layer. The maximum momentum imbalance may reach nine percent of the value of the first term of Equation 88 at the point immediately aft of the trailing edge; however, it diminishes to less than one percent four points downstream. The nine percent error in Equation 88 amounts to an error in the fourth significant figure of the velocity, which is consistent with the numerical procedure. These errors are slightly increased for the boundary condition \(R_1 = 0 \), consequently Equation 87 was used for the wake boundary condition during the final data runs.

Additionally, many known solutions of the boundary-layer equations were employed to ascertain the accuracy of the boundary-layer subroutine. Rosenhead (1961) has tabulated the Blasius velocity profile to six significant figures and the velocity profile for the boundary-layer flow along a cylinder near the forward stagnation point to seven figures. These solutions afforded an excellent opportunity to check the numerical method. In particular, it was found that agreement to five significant figures could be obtained with a velocity profile error tolerance of \(10^{-6} \). Diminishing the error tolerance to \(10^{-9} \) did not significantly improve the results for the same mesh. It did, however, increase the number of iterations required for convergence from 13 to 21. All succeeding results were obtained with a \(10^{-6} \) error tolerance on the velocity profile for this reason.

Further, agreement to the number of significant figures reported with the data of Rosenhead (1961) for several Falkner-Skan flows and convergent channel flow was obtained. For the adverse gradient Howarth

flow, \(U = U_m (1 - X^* / l) \), the point of vanishing skin friction was computed to occur at \(X^* / l = 0.12 \), in agreement with the data reported by Rosenhead (1961) of Howarth \((X^* / l = 0.12) \) and Leigh \((X^* / l = 0.1191) \). The mesh size was \(\Delta Z = 0.025, \Delta X = 0.005 \) and the outer edge of the boundary layer was at \(Z_e = 4 \).

A test flow of special relevance was the computation of Goldstein's wake function, \(f_\eta \), from Equation 11. The present results differ from Goldstein's (1930) by less than the 0.5 percent at \(\eta = 0 \) and less than 0.05 percent at \(\eta = 1.4 \). Goldstein's results are probably more accurate since he employed a smaller step size and higher-order of accuracy integration method.

Concluding this section of treating the numerical procedure, we reiterate the way in which the limits on the entire program arise. The overall computations are limited by the central processor time required. Central memory storage requirements are not a limiting factor. The bulk of the computing time is required by the inner loop because it contains the iterative boundary-layer subroutine. The error tolerance of the boundary-layer subroutine is \(10^{-6} \) to achieve the most accuracy with the minimum number of iterations. Typically, about 10 iterations per velocity profile are required by this subroutine. The error tolerance of the inner loop that incorporates the boundary-layer subroutine is \(10^{-5} \), and it requires about five iterations to converge using \(du_\eta / d \eta' = 0.2 \). The inner loop is required to converge at each streamwise station and either 240 or 480 stations have been employed in the main loop. The error tolerance of the outer loop is \(10^{-4} \) and it requires about 20 streamwise traverses to converge when started with the initial \(A'(X) \) given by Equation 76 and \(k = 0.8 \) in Equation 77.

The relationship between the error tolerances: \(10^{-6} \) on the boundary-layer subroutine, \(10^{-5} \) on the inner loop, and \(10^{-4} \) on the outer loop, must be approximately satisfied for convergence of the outer loop to the specified tolerance. If the inner loop-error tolerance is relaxed, the error in the computations will approach a small value which is greater than the outer loop error tolerance.
SECTION IV

THE RESULTS

The final computations have been performed with the numerical endpoints at $X = \pm 6$ or ± 12 and the outer edge of the lower deck located at $Z_e = 5$. The step sizes $H = 0.05$ or 0.1 with $\Delta X = 0.05$ or 0.025 were employed in the various combinations permitted by the computational time required. Certainly several additional combinations are desirable; however, the central processor time required and cost make these runs impractical at present. For example, diminishing H to 0.025 and ΔX to 0.0125 simultaneously would require over one-half hour of CDC 6600 central processor time for each cycle through the main loops. The ensuing tabular results have been obtained by performing x^2-extrapolation (Beckenbach (1961)) on the relevant data.

The skin friction which increases smoothly from the Blasius value upstream to the value λ_1 at the trailing edge of the triple-deck region is shown in Figure 5. The plotted values of $\partial u/\partial Z|_{Z=0}$ are the ratio of the actual skin friction to the Blasius skin friction from Equation 46 and the coordinate transformations of Equations 40 and 2. Thus $\partial u/\partial Z|_{Z=0}$ denotes the Blasius value of the skin friction.

The numerical skin friction joins smoothly to the asymptotic behavior predicted by Equation 56 when the velocity profile resulting from the numerical integration of Equation 54 is employed to initiate the boundary-layer computations in the lower deck at $X = -6$. A confirmation that the computations have been initiated an adequate distance upstream from the trailing edge is provided by the skin friction results from the computations initiated at $X = -12$. The results from the longer interval are in agreement with the plotted results to four decimal places.

Approved for Public Release
The ratio of the actual skin friction at the triple-deck trailing edge $X = 6$ to the Blasius value is λ_1 from Equation 66. Performing h^2-extrapolation on the data yields the result $\lambda_1 = 1.343$. It may be noted that the skin friction approaches its trailing-edge value smoothly from the left

$$\frac{dU}{dz}|_{z=0} = 1.343 + 0.555 \, X, \; X < 0.$$

For comparison, Figure 10 of Schneider and Denny (1971) shows two constant values for the skin friction in the immediate trailing-edge region, one labeled second-order boundary layer, the other isobaric plate. The ratio of their second-order boundary-layer skin friction to the isobaric plate skin friction is approximately $2.75/2.10 = 1.31$ for their single Reynolds number of 10^5. At the lower Reynolds numbers of 40, 100, and 200, Dennis (1973) has found that $\lambda_1 = 1.33$ by fitting the skin-friction data from his numerical solutions to the Navier-Stokes equations with the $R^{-3/8}$ scaling of the triple deck.

The multiplicative constant in the second term of the drag equation is the result of the integration of the increased skin friction in the trailing edge region shown in Figure 5. The drag on one side of the finite flat plate is given by Equation 47 as

$$C_d = 1.328 \, R^{-1/2} + 2.694 \, R^{7/8} + \ldots \quad (89)$$

with the constant in the second term evaluated from the numerical integration of the skin friction along the plate and the contribution from the integral of the asymptotic expansion, Equation 56, valid from the numerical endpoint to minus infinity. Messiter (1970) obtained the approximate values of 1.58 from his assumed $A(X)$ and 1.21 from his computed $A(X)$ for this constant. His values are lower than the present result because of the smaller favorable pressure gradient acting over most of the plate in his computations.
The drag coefficients predicted using Equation 89 are compared with the data of Dennis (1973), Dennis and Chang (1969), and Dennis and Dunwoody (1966) in Table 1. The present results are about eight percent high at \(R = 1 \) (\(c = 1 \)), two percent high at \(R = 15 \) (\(c = 0.713 \)), 3.6 percent low at \(R = 1,000 \) (\(c = 0.422 \)), and nearly exact at \(R = 10,000 \) (\(c = 0.316 \)) as compared with the numerical solutions of the Navier-Stokes equations. The accuracy of the two-term formula for the drag was unexpected at the lower Reynolds numbers, since the neglected third term is \(O(R^{-1}) \) and the term retained is \(O(R^{-7/6}) \). It was not entirely without precedent, however. Lagerstrom and Cole (1965) found that at \(R = 2 \) the skin friction predicted by boundary-layer theory plus the first correction agreed to within one percent with the exact solution for the example of a cylinder expanding at a parabolic rate. However, the neglected third term in their expansion differs from the second term by the inverse square root of the Reynolds number. This example prompted their comment, also reported by Van Dyke (1964), that "...the first correction to boundary-layer theory would predict the skin-friction (in separationless flow) down to much lower Reynolds numbers than generally imagined, say \(R_e = 10 \) or even 5." The data in Table I and the following data are even more surprising, since the exponents in their expansion are much more separated than the exponents of the present expansion.

Janour (1957), under the guidance of L. Prandtl, conducted experiments in the oil tunnel for viscous flow at the Wilhelm Institute at Gottingen in 1933 to determine the lower limit of validity of the Blasius drag formula. The lower limit was found to be approximately \(R = 2 \times 10^6 \) by extrapolation of the experimental data taken at 47 Reynolds numbers from 12 to 2335. Table 2 presents the experimental data tabulated by Janour (1951) and the drag coefficient predicted using Equation 89. The mean value of the error is 1.51 percent, the root mean square error is 3.48 percent and the maximum error is 7.52 percent. For comparison, the mean

TABLE 1

Drag Comparison with Numerical Data

<table>
<thead>
<tr>
<th>R</th>
<th>(C_d) (Equation (89))</th>
<th>(C_d^1)</th>
<th>(C_d^2)</th>
<th>(C_d^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.022</td>
<td>3.79</td>
<td>3.64</td>
<td>3.738</td>
</tr>
<tr>
<td>2</td>
<td>2.408</td>
<td></td>
<td>2.20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.465</td>
<td></td>
<td>1.36</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.170</td>
<td>0.773</td>
<td>0.748</td>
<td>0.7535</td>
</tr>
<tr>
<td>15</td>
<td>0.595</td>
<td></td>
<td>0.581</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.593</td>
<td>0.504</td>
<td>0.483</td>
<td>0.4862</td>
</tr>
<tr>
<td>40</td>
<td>0.317</td>
<td>0.323</td>
<td>0.316</td>
<td>0.3144</td>
</tr>
<tr>
<td>100</td>
<td>0.181</td>
<td>0.187</td>
<td>0.188</td>
<td>0.1826</td>
</tr>
<tr>
<td>200</td>
<td>0.120</td>
<td>0.123</td>
<td></td>
<td>0.1220</td>
</tr>
<tr>
<td>500</td>
<td>0.0711</td>
<td></td>
<td>0.0731</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>0.0484</td>
<td></td>
<td>0.0502</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>0.0322</td>
<td></td>
<td>0.0341</td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td>0.0205</td>
<td></td>
<td>0.0206</td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td>0.0141</td>
<td></td>
<td>0.0141</td>
<td></td>
</tr>
</tbody>
</table>

1. Dennis and Chang (1969)
2. Dennis and Dunwoody (1966)
3. Dennis (1973)
<table>
<thead>
<tr>
<th>R</th>
<th>C_D (Experimental)</th>
<th>C_D (Equation 89)</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.93</td>
<td>0.648</td>
<td>0.6923</td>
<td>6.44</td>
</tr>
<tr>
<td>15.63</td>
<td>0.524</td>
<td>0.5761</td>
<td>9.22</td>
</tr>
<tr>
<td>15.63</td>
<td>0.554</td>
<td>0.5761</td>
<td>3.64</td>
</tr>
<tr>
<td>20.00</td>
<td>0.600</td>
<td>0.4496</td>
<td>-3.63</td>
</tr>
<tr>
<td>23.08</td>
<td>0.660</td>
<td>0.4394</td>
<td>-1.27</td>
</tr>
<tr>
<td>28.08</td>
<td>0.364</td>
<td>0.5967</td>
<td>7.53</td>
</tr>
<tr>
<td>31.67</td>
<td>0.368</td>
<td>0.6649</td>
<td>2.28</td>
</tr>
<tr>
<td>29.7</td>
<td>0.375</td>
<td>0.3902</td>
<td>1.54</td>
</tr>
<tr>
<td>36.9</td>
<td>0.366</td>
<td>0.3651</td>
<td>3.18</td>
</tr>
<tr>
<td>36.62</td>
<td>0.321</td>
<td>0.3348</td>
<td>2.83</td>
</tr>
<tr>
<td>40.06</td>
<td>0.300</td>
<td>0.3185</td>
<td>6.66</td>
</tr>
<tr>
<td>40.32</td>
<td>0.313</td>
<td>0.3013</td>
<td>-4.71</td>
</tr>
<tr>
<td>47.0</td>
<td>0.291</td>
<td>0.2962</td>
<td>-2.33</td>
</tr>
<tr>
<td>50.7</td>
<td>0.268</td>
<td>0.2735</td>
<td>2.86</td>
</tr>
<tr>
<td>55.4</td>
<td>0.249</td>
<td>0.2546</td>
<td>-2.42</td>
</tr>
<tr>
<td>60.3</td>
<td>0.243</td>
<td>0.2455</td>
<td>0.97</td>
</tr>
<tr>
<td>73.6</td>
<td>0.238</td>
<td>0.2139</td>
<td>-1.27</td>
</tr>
<tr>
<td>91.9</td>
<td>0.177</td>
<td>0.1888</td>
<td>-6.11</td>
</tr>
<tr>
<td>101.3</td>
<td>0.188</td>
<td>0.1780</td>
<td>-5.60</td>
</tr>
<tr>
<td>115.5</td>
<td>0.188</td>
<td>0.1858</td>
<td>-1.31</td>
</tr>
<tr>
<td>138.4</td>
<td>0.153</td>
<td>0.1689</td>
<td>-8.66</td>
</tr>
<tr>
<td>161.6</td>
<td>0.154</td>
<td>0.1540</td>
<td>0.01</td>
</tr>
<tr>
<td>272.7</td>
<td>0.111</td>
<td>0.1214</td>
<td>-8.40</td>
</tr>
<tr>
<td>247.2</td>
<td>0.108</td>
<td>0.1381</td>
<td>-1.70</td>
</tr>
<tr>
<td>219.1</td>
<td>0.1073</td>
<td>0.1238</td>
<td>-7.00</td>
</tr>
<tr>
<td>234.5</td>
<td>0.1068</td>
<td>0.1094</td>
<td>2.58</td>
</tr>
<tr>
<td>318.1</td>
<td>0.0912</td>
<td>0.0901</td>
<td>1.11</td>
</tr>
<tr>
<td>340.5</td>
<td>0.0873</td>
<td>0.0876</td>
<td>0.38</td>
</tr>
<tr>
<td>402.</td>
<td>0.0896</td>
<td>0.0803</td>
<td>-1.08</td>
</tr>
<tr>
<td>452.</td>
<td>0.0794</td>
<td>0.0772</td>
<td>2.24</td>
</tr>
<tr>
<td>483.</td>
<td>0.0702</td>
<td>0.0703</td>
<td>0.18</td>
</tr>
<tr>
<td>516.</td>
<td>0.0674</td>
<td>0.0698</td>
<td>2.31</td>
</tr>
<tr>
<td>640.</td>
<td>0.0610</td>
<td>0.0619</td>
<td>-1.56</td>
</tr>
<tr>
<td>993.</td>
<td>0.0650</td>
<td>0.0685</td>
<td>5.39</td>
</tr>
<tr>
<td>1050.</td>
<td>0.0658</td>
<td>0.0671</td>
<td>2.35</td>
</tr>
<tr>
<td>1115.</td>
<td>0.0636</td>
<td>0.0651</td>
<td>2.43</td>
</tr>
<tr>
<td>725.</td>
<td>0.0547</td>
<td>0.0578</td>
<td>5.71</td>
</tr>
<tr>
<td>785.</td>
<td>0.0528</td>
<td>0.0552</td>
<td>4.72</td>
</tr>
<tr>
<td>808.</td>
<td>0.0520</td>
<td>0.0546</td>
<td>5.19</td>
</tr>
<tr>
<td>1145.</td>
<td>0.0610</td>
<td>0.0649</td>
<td>6.59</td>
</tr>
<tr>
<td>1336.</td>
<td>0.0617</td>
<td>0.0612</td>
<td>-0.81</td>
</tr>
<tr>
<td>1566.</td>
<td>0.0592</td>
<td>0.0607</td>
<td>2.47</td>
</tr>
<tr>
<td>1640.</td>
<td>0.0545</td>
<td>0.0566</td>
<td>3.67</td>
</tr>
<tr>
<td>1731.</td>
<td>0.0523</td>
<td>0.0549</td>
<td>5.25</td>
</tr>
<tr>
<td>2133.</td>
<td>0.0513</td>
<td>0.0520</td>
<td>1.39</td>
</tr>
<tr>
<td>2202.</td>
<td>0.0505</td>
<td>0.0510</td>
<td>0.96</td>
</tr>
<tr>
<td>2335.</td>
<td>0.0499</td>
<td>0.0505</td>
<td>1.23</td>
</tr>
</tbody>
</table>
value of the experimental error is given by Janour as ± 3 percent. At
$R = 2 \times 10^5$, the second term of Equation 89 contributes an additional
4.9 percent to the Blasius drag, well within the limits of Janou’s
extrapolation. For $R = 5 \times 10^5$, a commonly accepted upper limit for
laminar flows, the second term contributes an additional 1.5 percent to
the Blasius drag.

The tabulated results are also shown on Figure 6 where the experimental
scatter is evident. The Blasius drag equation, the first term of Equation
89, considerably underpredicts the drag for the lower range of Reynolds
numbers, whereas including the second term corrects the drag prediction
to within 0.8 percent of the experimental error.

The very close agreement between the present results and the previous
data may be somewhat disconcerting when the next higher-order term of
Equation 89 is considered. Imai (1957) has shown that this term, due to
the overall displacement effect of the boundary layer on the semi-
infinite plate is of $O(R^{-1})$ and a term of this order also arises from
the trailing-edge region from Equation 47. Unfortunately, the numerical
and experimental data reported in Tables 1 and 2 scatter about the
present results and trends with R^{-1} cannot be discerned. A plausible
explanation appears to be that the term of $O(R^{-1})$ and other higher
fractional-order terms resulting from the trailing-edge region tend
to cancel the $O(R^{-1})$ term of Imai (1957).

The increase in skin friction is caused by the favorable pressure
gradient induced on the plate by the wake. The pressure distribution on
the plate and downstream in the wake is shown on Figures 7 and 8. The
pressure $P(x)$ of Figure 7 is related to the physical pressure p^* by

$$P(x) = \lambda^{1/2} \epsilon x^2 \left(p^* - p_{\infty} \right) / \rho U_{\infty}^2$$ \hspace{1cm} (90)

and the streamwise coordinate X is related to the physical coordinate
x^* by

$$X = \lambda^{1/4} \epsilon^{1/2} x^* / L$$ \hspace{1cm} (91)

Approved for Public Release
Figure 6. Drag versus Reynolds Number - A Comparison of Theory and Experiment
Figure 7. Induced Pressure Distribution
Figure 8. A Comparison of the Induced Pressure Distribution with the Results of Schneider & Denny at $R = 10^8$
as in Section II. Messiter (1970) also employed the above scaling and his approximate results are shown on Figure 7 for comparison. Upstream near $X = -3$ Messiter's results are in agreement with the present results. In the range $-3 < X < -0.75$ Messiter's pressure gradient is apparently less favorable than the present results, thus accounting for the smaller multiplicative constant he obtained for the second term of the drag equation. The minimum value of the pressure is reached at $X = 0$ in both analyses; and Messiter (1970) found $P_0 = -0.36$ while here $P_0 = -0.30E$. Downstream in the wake Messiter's pressure apparently reaches a maximum of $P(X) = 0.06$ at $X = 2.75$. The pressure computed here reached a maximum of $P(X) = 0.042$ at $X = 3.05$ and diminishes to the asymptotic behavior predicted by Equation 64 with $b_1 = -0.275$. The constant b_1 also occurs in the expansions of the pressure upstream and the centerline velocity and displacement function downstream as indicated in Equations 65, 63, and 62, respectively. The constant b_1 was determined by fitting the numerical data from these three independent sources to serve as a check on the accuracy of the results. The discussion of b_1 will be deferred until the relevant results are presented.

Schneider and Denny (1971), who did not employ the Reynolds number scaling of Stewartson (1969) and Messiter (1970), obtained results for the specific Reynolds number $R = 10^5$. Their pressure results are shown in Figure 8. Along the plate and in the immediate wake their pressure gradient and the present results appear in agreement although their pressure level is lower. The similar pressure gradients on the plate produce similar increases in the skin friction as evidenced by the close agreement of λ_2 and their second-order boundary-layer results. In the wake the pressure results of Schneider and Denny (1971) reach a relatively high peak before rapidly diminishing to the freestream value while the present results smoothly approach the asymptotic freestream value.

The pressure distribution is generated by the displacement function of the lower deck, shown with Messiter's approximate solutions on Figure 9. Messiter (1970) assumed the form for $A'(X)$ given by Equation 76 with $C_0 = 0$, performed the Hilbert integral analytically, then
employed an integral sublayer method to arrive at a computed $A(X)$ which was compared with the assumed $A(X)$ to ascertain the adjustments required in the C_i. The method is similar to the procedure employed here to improve the input data. Messiter was able to obtain a computed $A(X)$ that is in qualitative agreement with the assumed $A(X)$. Both functions are displayed on Figure 9 along with the present results which lie between Messiter’s results on the plate and approximately follow his assumed $A(X)$ in the wake. Asymptotically the present results satisfy the expansion of Equation 62 for $X = \infty$ if $b_1 = -0.275$.

From Equations 18 and 24, $A(X)$ multiplies the first-order perturbation to the streamwise velocity in the main deck

$$ u = U_0(y) + e^{\lambda^{-1/4}} A(\lambda^{-1/4} X) \frac{dU_0}{dy} + \ldots $$

(92)

Considering Equation 92 as a Taylor series in U_0, it is evident that $A(X)$ represents a shift in y or displacement of the streamlines throughout the main deck.

In the upper deck, the pressure is related to the slope of the displacement function $A'(X)$, shown on Figure 10 by linear airfoil theory, i.e., the Hilbert integral, Equation 43. Physically, $A'(X)$ is the negative of the velocity normal to the plate at the lower edge of the upper deck and is of $O(e^2)$ from Equations 27 and 28. As shown on Figure 10, the vertical velocity is not discontinuous at the trailing edge as in the joining of the Blasius (1908) and Goldstein (1930) solutions. The triple-deck analysis has smoothed out the discontinuity in the normal velocity, which was its purpose. The maximum normal velocity occurs immediately aft of the trailing edge and strong gradients exist in this region.

The assumed $A'(X)$ of Messiter (1970) and the revised $A'(X)$ for the present input data do not approximate the solution well near the maximum. The revised $A'(X)$ is closer to the solution upstream of the trailing edge, thus accounting for the increased computational time required to achieve convergence when Messiter’s form of $A'(X)$ was employed as initial
Figure 10. Slope of the Displacement Function, $A(x)$
data. The improvement in $A'(X)$ is primarily due to the change in the constant C_q of Equation 76 which was diminished from Messiter's value of 3.0 to 1.4.

At this point it is relevant to reconsider the skew-reciprocal Hilbert integral subroutines and perform an error check. The subroutine that computes $A'(X)$ from $P(X)$ is required by the numerical procedure to produce the results just discussed. The subroutine that computes $P(X)$ from $A'(X)$ is not required in the main loops and therefore may be employed as a check on the skew-reciprocal nature of the preceding pressure and displacement thickness results. The $A'(X)$ of Figure 10 was input to this subroutine and the resulting $P(X)$ was compared with the $P(X)$ of Figure 7. The error, based on the pressure at the trailing edge, is about one percent over most of the numerical range as shown on Figure 11. For the short range calculations $-6 \leq X \leq 6$, the error reaches a maximum of 4.5 percent at the downstream extreme of the range, $X = 6$. Thus, the preceding $P(X)$ and $A'(X)$ are properly skew-reciprocal within the error shown on Figure 11. The extended curves of Figure 11 pertain to the computations originating at $X = -12$. The error is diminished to about 0.5 percent using the extended interval and again reaches a maximum of five percent at the downstream extreme, $X = +12$. The decreasing error with increasing interval length is in agreement with the Hilbert transformation error analysis. Appendix I. The skin friction data resulting from the two computations agree to about 10^{-4}, indicating that errors of the magnitude shown on Figure 11 in the pressure and displacement thickness have little effect on the solution.

Another quantity of interest, which is also required for the computation of the constant b_1 is the wake centerline velocity shown on Figure 12. Physical coordinates at $R = 10^5$ have been employed to permit comparison with the data of Schneider and Denny (1971). The present results agree with the results of Schneider and Denny over the downstream range $0.001 < x/L < 0.05$. Far downstream the present results correctly approach the one-term Goldstein (1930) results. The results of Schneider and Denny (1971) apparently lie between the one-term
Goldstein and the full Goldstein results at $x^* / L = 1$ corresponding to their second-order boundary-layer calculations which employ the true edge velocity as the boundary condition, rather than matching to the main deck as in Stewartson's theory.

The desirability of using a smaller streamwise step size is evident when the small x^* / L range is viewed. Computational time limitations on the present numerical procedure prohibit the use of a ΔX small enough to determine precisely how the present results approach the Navier-Stokes region computed by Schneider and Denny. Both sets of data approach the small x^* / L behavior of the centerline velocity predicted by Equation 73 but the results of Schneider and Denny deviate for $x^* / L < 3 \times 10^{-4}$.

Expanding the previous streamwise scales and returning to the triple-deck coordinates to permit visualization of the region near $X = 0$ (Figures 13 and 14) we see that the present results approach the behavior predicted by Equation 73 as the step size is halved. The sensitivity of the results to the step size on this scale is not surprising since Plochin and Flugge-Lotz (1968) encountered the same phenomena in their computations to obtain an improved first approximation to the solution in the trailing edge region at high Reynolds numbers. It should also be noted that the second-order terms of the expansions Equations 73 and 75 are very nearly equal to the first-order terms and could easily account for the small disagreement evident in Figures 13 and 14.

The pressure results, Figure 14, exhibit the same trends as the centerline velocity as $X = 0$. Upstream the pressure results are less sensitive to step size than downstream because the boundary layer has not been directly notified that the skin friction has vanished. Alternatively, the pressure is more singular as $X = 0$ from the wake side than as $X = 0$ from the plate side of the trailing edge. The pressure at the trailing edge P_0 has been evaluated from the limit as $X \to 0$ from the left for this reason.
Figure 13. The Centerline Velocity near $X = 0$

Equation (73)
we have now discussed the numerical data for the three functions $A(x)$, $p(x)$, and $U(x,0)$, together with the predicted asymptotic behavior near $x = 0$. The asymptotic expansions for large x of these three functions each contain the arbitrary constant b_0, which must be determined from the numerical procedure. The satisfaction of the asymptotic boundary conditions is of major importance in assessing the accuracy of the numerical procedure. The present results on the predicted asymptotic behavior for $|x| \to \infty$; however, the second-order terms serve as a more stringent test of the accuracy of the numerical procedure. Here the asymptotic expansions were numerically fitted to the previous numerical data to simultaneously determine the second-order constant b_1 and provide a measure of the numerical matching of the data and the expansions.

With the obvious change in notation, each of the expansions, Equations 62, 63, 64, and 65, were rearranged to determine the constant b_1 appearing in the second-order term, i.e.,

$$b_p = \left[3^{1/2} |x|^{2/3} (p^+ - p^-)/0.992 - 1 \right] |x|^{1/2}$$ \hspace{1cm} (93)

$$b_A = \left[A(x) + 0.070x^{-1} - 0.892x^{1/3} \right] x^{1/2}/0.892$$ \hspace{1cm} (94)

$$b_U = \left[U(x,0) - 0.052x^{-1} - 1.611x^{1/3} \right] x^{1/2}/1.611$$ \hspace{1cm} (95)

The difference of Equations 64 and 65 was formed to eliminate the higher-order constant b_0 from the pressure expansions. By substitution of the values of $p(x)$, $A(x)$, and $U(x,0)$ obtained from the numerical procedure the values of b_1 required to fit each function to second-order to the predicted asymptotic behavior are found. Ideally, the three b_1 curves should approach and remain at one constant value as $x \to \infty$. The fact that the b_1 curves of Figures 15, 16, and 17 do not is, admittedly, a shortcoming of the numerical procedure. The curves shown pertain to the preceding data. The numerical study which led to the selection of the preceding values for the parameters of the interval
Figure 15. The Asymptotic Behavior: \(b_1 \) for \(\lambda = 6, \Delta x = 0.05 \)
Figure 16. The Asymptotic Behavior: b_1 for $X = 6, 3X = 0.025$
Figure 17. The Asymptotic Behavior: b_1 for $X = 12$, $\Delta X = 0.05$
is contained in Appendix II. Figure 15 pertains to the data obtained with \(0 \leq Z \leq 9\), \(H = 0.1\) and \(-6 \leq X \leq 6\), \(\Delta X = 0.05\). Figure 16 pertains to the same interval with \(H = 0.05\) and \(\Delta X = 0.025\) while Figure 17 pertains to the extended interval \(-12 \leq X \leq 12\) with \(\Delta X = 0.05\) and \(H = 0.1\), as employed for Figure 15.

A nominal asymptotic value of -0.275 has been selected for \(b_i\) from the three sets of data. To set the frame of reference, the 10 percent error bounds on \(b_i\) amount to a one percent error in \(P(x)\) and a 0.5 percent error in \(A(x)\) and \(U(x,0)\) at \(X = 0\) from Equations 62, 63, 64, and 65. In fact, an error of 100 percent in \(b_i\) only amounts to a nine percent error in \(P(x)\) at \(X = 6\).

It should be noted that the respective \(b_i\) curves are in agreement between three different sets of data within the range \(X < 2\). This is a definite indication that the small changes in the large \(X\) behavior of \(A(x)\), \(P(x)\), and \(U(x,0)\) encountered here do not appreciably affect the solution nearer the trailing edge.

The \(b_i\) and \(b_j\) curves are within the 10 percent error band of the nominal \(b_i\) as \(X\) becomes large in all three cases indicating that \(A(x)\) and \(U(x,0)\) agree with the predicted asymptotic behavior to within 0.5 percent.

The pressure results are indeed the least accurate. The \(b_i\) curve may even appear divergent as \(X \to 6\) on this scale. The curve is not divergent since the \(b_i\) of Figure 17 is smooth in the range \(6 \leq X \leq 10\), the steep increase in \(b_i\) occurring at \(X = 12\). This steep increase in \(b_i\), which approaches a nine percent error in \(P(x)\), is attributed to several numerical problems. The computation of \(b_i\) becomes less accurate as \(|X| \to \infty\) because \(P(X)\) is approaching zero at both ends of the range and the difference must be employed to compute \(b_i\) from Equation 93. The \(b_i\) and \(b_j\) computations do not encounter the small differences incurred in the computation of \(b_i\). For example, at \(X = 6\), \(A(x) = 1.5, U(x,0) = 3\) while \(P(X) = 0.05\). The second numerical problem is the Hilbert integral.

Approved for Public Release
which is dependent on the functions $A'(X)$ and $P(X)$ over the entire interval. As $|X| \to \infty$ both $A'(X)$ and $P(X) \to 0$ and the integral is the sum of hundreds of larger values which must cancel. This is the classical nemesis of numerical analysts. The slope and magnitude of the error is in agreement with the results of inverting the solution using the Hilbert transformation, Figure 11. The error does not significantly affect the results because the error is a small percentage of a very small function value removed a sufficient distance from the trailing edge region.

The constant b_1 corresponds to an origin shift in X which is evident from the binomial expansion.

\[X^{1/3} = (X + \Delta X)^{1/3} = X^{1/3} (1 + \Delta X/3X + \ldots) \]

\[\times X^{1/3} + X^{2/3} \Delta X/3 + \ldots \]

so $\Delta X = 3b_1$. The origin shift is evident when the present velocity profiles are compared with the first-order Goldstein wake velocity profiles given by Equation 45 for large X as shown on Figure 18. The present velocity profiles are uniformly translated upstream since b_1 is negative. As X increases the magnitude of the shift properly diminishes. The origin shift is also evident when the pressure and displacement function are compared with the one-term asymptotic expansions as shown on Figures 7 and 9.

The condition that the velocity profile of the lower deck must ultimately merge with the Goldstein wake velocity profile is attained by the numerical procedure. This condition cannot be enforced because of the parabolic nature of the boundary-layer equations and serves as another check on the results. From Equation 62 b_1 is the shift in $A(X)$ or the velocity at the outer edge of the profile and, from Equation 63, b_1 is the shift in $U(X,0)$, the velocity at the lower edge or wake centerline.
The perturbations to the linear velocity profile of the lower deck caused by the preceding pressure gradients are shown on Figures 19, 20, and 21. The velocity perturbations show that the outer edge was taken sufficiently large since \(A(x) \) attains its constant value well inside the outer edge at all streamwise locations. Upstream on the plate the perturbations are small and permit the expanded velocity scale of Figure 19 where a slight departure of the velocity profile from the vertical direction is evident at \(Z = 6 \). The velocity variation at \(Z = 6 \) is greater than \(10^{-4} \), the error tolerance on \(A(x) \), and necessitated moving the numerical outer edge of the lower deck from \(Z = 6 \) to \(Z = 9 \) to determine the second-order constant, \(b_1 \).

The significance of the proper placement of the outer edge of the layer is that the outer boundary condition is enforced on the profile by the numerical method. The effects of enforcing the boundary condition propagate for some distance down the profile and into the layer. The propagation of the boundary condition into the layer requires that the numerical outer edge of the layer be placed away from the region of interest. It is shown in Appendix B that the skin friction and \(\lambda_1 \) are not significantly affected by changing the depth of the layer from \(Z_o = 6 \) to \(Z_o = 9 \), ensuring that the outer edge boundary condition has not been enforced prematurely.

Figures 19 and 20 demonstrate that the velocity increases smoothly to the trailing edge under the influence of the favorable pressure gradient induced on the plate by the wake. Note that the velocity perturbation, \(U = Z \), is plotted on Figures 19, 20, and 21. At the trailing edge, \(x = 0 \), the velocity profile is smooth and differentiable as assumed in the triple-deck analysis. Downstream of the trailing edge the effects of the vanished skin friction and rapidly increasing centerline velocity propagate smoothly outward into the wake velocity profiles as shown on Figure 21. The slope of the perturbation velocity profiles at \(Z = 0 \) must be \(-1 \) to satisfy the boundary condition along the wake centerline. Ultimately, the velocity profiles downstream, Figure 22, merge with the Goldstein wake velocity profiles to satisfy the conditions downstream, as shown on Figure 18.

Approved for Public Release
Figure 21. Velocity Perturbations in the Inner Wake
Figure 32: Velocity Profiles in the Inner Wake
SECTION V
CONCLUSIONS

The present numerical analysis has provided additional validation for the triple-deck flow structure at the trailing edge of a flat plate and determined the constants required to complete the asymptotic expansions of Stewartson (1969). The results are self-consistent for the various grid sizes and numerical ranges employed for the computation. The present results have been demonstrated consistent with the previous numerical analyses of others and with the experimental data of Janour (1951) for the entire laminar range of Reynolds numbers.

A summary of the present numerical results is presented in Figure 23. As qualitatively predicted by Stewartson (1969) and Messiter (1970), the pressure gradient is favorable to the trailing edge, steeply adverse immediately aft of the trailing edge, and again favorable downstream of the pressure overshoot. The skin friction continuously increases from the Blasius value to λ_1, its value at the trailing edge. The displacement function $A(x)$ also continuously increases from its upstream value on the plate through the trailing edge region and downstream to the Goldstein wake.

The numerical results are also tabulated in Table III. The third decimal place is believed to be accurate.

The theoretical extensions of the triple-deck analysis of Section II which are necessary to include the effects of a compressible subsonic freestream, a supersonic freestream, a body of non-zero thickness, and angle of attack are reported in Stewartson (1974). The present numerical results may be generalized to account for the subsonic freestream. The numerical solution for the supersonic freestream case has been performed by P. G. Daniels and is reported in Stewartson (1974).
Figure 23. A Summary of the Numerical Results

C_d = 1.328 R^{-1/4} + 2.694 R^{-7/8} + ...
TABLE III
THE NUMERICAL RESULTS

| X | $P(X)$ | $A(X)$ | $N_0/\Delta Z|_{Z=0}$ | $U(Y,0)$ |
|-----|--------|--------|------------------------|----------|
| -5.0| -1.113 | 0.064 | 1.035 | |
| -4.5| -1.120 | 0.069 | 1.039 | |
| -4.0| -1.129 | 0.076 | 1.044 | |
| -3.5| -1.140 | 0.084 | 1.050 | |
| -3.0| -1.152 | 0.084 | 1.058 | |
| -2.5| -1.167 | 0.107 | 1.069 | |
| -2.0| -1.186 | 0.125 | 1.084 | |
| -1.5| -1.211 | 0.148 | 1.106 | |
| -1.0| -1.245 | 0.181 | 1.139 | |
| -0.5| -1.296 | 0.233 | 1.198 | |
| 0.0 | -0.388 | 0.335 | 1.343 | 0.4 |
| 0.5 | -0.082 | 0.539 | 0.04 | 1.024 |
| 1.0 | -0.004 | 0.710 | 1.367 | 1.620 |
| 1.5 | -0.028 | 0.850 | 1.825 | 1.999 |
| 2.0 | -0.042 | 0.967 | | 2.150 |
| 2.5 | -0.047 | 1.068 | | 2.285 |
| 3.0 | -0.049 | 1.156 | | 2.407 |
| 3.5 | -0.048 | 1.234 | | 2.518 |
| 4.0 | -0.047 | 1.305 | | 2.622 |
| 4.5 | -0.044 | 1.369 | | |
| 5.0 | -0.041 | 1.429 | | |
The numerical problem associated with a body of non-zero thickness, discussed by Riley and Stewartson (1969), entails the accurate determination of the separation point and has not been solved.

The effects of non-zero angle of attack or the fundamental problem of the triple deck for a lifting flat plate has been posed by Brown and Stewartson (1970). The numerical problem is similar to the present problem but complicated by the asymmetry of the flow. The numerical solution has not been obtained since the angle of attack generates different pressures and displacement functions on the top and bottom surfaces of the plate which present another formidable problem. It should be noted that the present numerical procedure is constrained by the time required to perform the computations. This constraint is primarily due to the boundary-layer subprogram. It is recommended that subsequent numerical procedures employ considerably faster boundary-layer computation methods to solve the above problem.

The unique numerical method developed here is the method of solving the boundary-layer equations iteratively for the pressure gradient. This numerical method is stable and does not require smoothing of the data to achieve convergence between the inviscid flow and the boundary layer.

Approved for Public Release
APPENDIX I

ERROR ANALYSES OF THE NUMERICAL PROCEDURE

Two error analyses relevant to the numerical procedure are presented in this Appendix. The first checks the initial velocity profile of Figure 3. The second was used to develop the Hilbert transformation subroutines.

The Upstream Velocity Profile

The upstream velocity profile may be obtained by several methods. Originally, the boundary-layer equations were integrated along the plate from an arbitrary -x location where a linear velocity profile was assumed to exist with the pressure gradient given by Equation 48 until the asymptotic value of the displacement thickness given by Equation 56 was obtained. This method was later found to have produced a velocity profile, labeled 1 on Figure 24, with a 2.5 percent larger skin friction than predicted by Equation 56. The second method corrects this difficulty by numerically integrating Equation 54 using Hamming's modified predictor-corrector method (Ralston and Wilf (1960)) and substituting the results into Equation 52 to obtain the correct asymptotic velocity profile for X large and negative. The numerical solution of Equation 54 is presented in Table IV. The initial velocity profiles for X = -6 obtained from these two methods are shown on Figure 24. The third profile serves as a final check. It is a result from the final program started at X = -12 with an initial velocity profile from Equation 54 and converged to the solution.

The velocity profile resulting from the integration of the boundary-layer equations originating from a linear velocity profile, curve 1 of Figure 24, is shallow, indicating that the layer was not given sufficient distance to develop or the Z+= boundary condition was enforced prematurely at Z_e = 6. The asymptotic velocity profile resulting from

Figure 24. A Comparison of Initial Velocity Profiles at X = -6
<table>
<thead>
<tr>
<th>$\eta = \frac{2}{3(2\pi)^{1/3}}$</th>
<th>F_1</th>
<th>$z_1 = \frac{(U-Z)X}{1.7540}$</th>
<th>F_1''</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.6560</td>
</tr>
<tr>
<td>.05</td>
<td>.0099</td>
<td>.0206</td>
<td>.5673</td>
</tr>
<tr>
<td>.10</td>
<td>.0030</td>
<td>.0568</td>
<td>.4813</td>
</tr>
<tr>
<td>.15</td>
<td>.0064</td>
<td>.0789</td>
<td>.4031</td>
</tr>
<tr>
<td>.20</td>
<td>.0100</td>
<td>.0973</td>
<td>.3341</td>
</tr>
<tr>
<td>.25</td>
<td>.0161</td>
<td>.1125</td>
<td>.2749</td>
</tr>
<tr>
<td>.30</td>
<td>.0220</td>
<td>.1249</td>
<td>.2249</td>
</tr>
<tr>
<td>.35</td>
<td>.0285</td>
<td>.1351</td>
<td>.1834</td>
</tr>
<tr>
<td>.40</td>
<td>.0355</td>
<td>.1434</td>
<td>.1492</td>
</tr>
<tr>
<td>.45</td>
<td>.0429</td>
<td>.1501</td>
<td>.1212</td>
</tr>
<tr>
<td>.50</td>
<td>.0505</td>
<td>.1556</td>
<td>.0988</td>
</tr>
<tr>
<td>.55</td>
<td>.0584</td>
<td>.1601</td>
<td>.0805</td>
</tr>
<tr>
<td>.60</td>
<td>.0665</td>
<td>.1637</td>
<td>.0659</td>
</tr>
<tr>
<td>.65</td>
<td>.0747</td>
<td>.1667</td>
<td>.0540</td>
</tr>
<tr>
<td>.70</td>
<td>.0831</td>
<td>.1691</td>
<td>.0445</td>
</tr>
<tr>
<td>.75</td>
<td>.0916</td>
<td>.1712</td>
<td>.0368</td>
</tr>
<tr>
<td>.80</td>
<td>.1002</td>
<td>.1728</td>
<td>.0305</td>
</tr>
<tr>
<td>.85</td>
<td>.1089</td>
<td>.1742</td>
<td>.0255</td>
</tr>
<tr>
<td>.90</td>
<td>.1177</td>
<td>.1754</td>
<td>.0214</td>
</tr>
<tr>
<td>.95</td>
<td>.1265</td>
<td>.1764</td>
<td>.0180</td>
</tr>
<tr>
<td>1.00</td>
<td>.1353</td>
<td>.1772</td>
<td>.0152</td>
</tr>
<tr>
<td>1.05</td>
<td>.1442</td>
<td>.1779</td>
<td>.0129</td>
</tr>
<tr>
<td>1.10</td>
<td>.1531</td>
<td>.1783</td>
<td>.0110</td>
</tr>
<tr>
<td>1.15</td>
<td>.1620</td>
<td>.1790</td>
<td>.0095</td>
</tr>
<tr>
<td>1.20</td>
<td>.1710</td>
<td>.1795</td>
<td>.0082</td>
</tr>
<tr>
<td>1.25</td>
<td>.1800</td>
<td>.1799</td>
<td>.0071</td>
</tr>
<tr>
<td>1.30</td>
<td>.1890</td>
<td>.1802</td>
<td>.0061</td>
</tr>
<tr>
<td>1.35</td>
<td>.1980</td>
<td>.1805</td>
<td>.0054</td>
</tr>
<tr>
<td>1.40</td>
<td>.2070</td>
<td>.1807</td>
<td>.0047</td>
</tr>
<tr>
<td>1.45</td>
<td>.2161</td>
<td>.1809</td>
<td>.0041</td>
</tr>
<tr>
<td>1.50</td>
<td>.2251</td>
<td>.1811</td>
<td>.0036</td>
</tr>
</tbody>
</table>
The second method for the numerical evaluation of Cauchy integrals is reported in Collatz (1966) and attributed to Weber. The method consists of splitting the range of integration about the singularities and translating the singularity to the origin in each of the resulting integrals. Thus, employing this method, the center integral of Equation 79 is

\[
\int_0^\infty \frac{P(x)}{x-x_1} \, dx = \int_0^{x-a} \frac{P(x)}{s} \, ds - \int_a^{x+a} \frac{P(x)}{s} \, ds
\]
(96)

where \(s = x-x_1 \) in the first integral and \(s = x-a \) in the second integral on the right hand side. When the integrands are combined, three cases that depend upon the position of the singularity within the original interval result and

\[
\int_0^\infty \frac{P(x)}{x-x_1} \, dx = -\int_0^{x-a} \frac{P(x+a)-P(x-a)}{s} \, ds - \int_a^{x+a} \frac{P(x+a)}{s} \, ds
\]
(97)

Here \(j = +1 \) if \(|x-a| < |x-x_1| \), \(j = 0 \) if \(|x-a| = |x-x_1| \) and \(j = -1 \) when \(|x-a| > |x-x_1| \). In each of the three cases the singularity has been translated to the origin. The remaining portions of the integrals are nonsingular and may be integrated by the trapezoidal rule. The singularity is treated by assuming a Taylor series as it was for the subtraction of the singularity method.

An error analysis was performed utilizing three of Van Dyke's (1959) airfoil integrals. The solutions are given in closed form and the two methods were compared with each other and the solution. For the three cases considered, smaller errors were incurred using the subtraction of the singularity technique than with Weber's method. It was therefore eliminated from further consideration. Figure 26 presents the error incurred during the computation of the Cauchy integral of the function \(X^3 \) since it was determined that cubics fit wide ranges of Messiter's (1970) data very closely. The error approaches three percent as the singularity approaches the endpoint for \(\alpha = 0.1 \). For the smaller step
Figure 26. Cauchy Integral Error Analysis
sizes, $\Delta X = 0.05$ and 0.01, the error is less than 0.7 percent for all points. The error for $\Delta X = 0.05$ is small and this step size was selected to perform many of the ensuing computations. The smaller step size was reserved for final checks on the entire program.

The skew-reciprocal property of the Hilbert transformation permits the simultaneous error analysis of both the $P(X)$ and $A'(X)$ subroutines. One subroutine computes $A'(X)$ from $P(X)$ by assembling the appropriate expressions for the integrals of the asymptotic expansions of $P(X)$ and the above numerical methods. Particular attention is required to ensure that each method is employed only within its range of validity, i.e., $X = a$, $X < 0$, $X = 0$, $X > 0$, or $X = e$. The other subroutine computes the pressure, $P(X)$, from $A'(X)$ by the same procedure utilizing the appropriate expressions resulting from the integrals of the asymptotic expansions of $A'(X)$. Subsequent error analysis and programming checks were facilitated by the skew-reciprocal nature of the subprograms which were combined in a short flip-flop program. The input is an assumed $A'(X)$; the output is the error accumulated in computing the pressure from $A'(X)$ and then computing $A'(X)$ plus the two-way error from the pressure. Moll's (1970) form for $A'(X)$, Equation 76, with $C_0 = 0$, was used to check the subroutines since the converged form was not yet available. The relevant error is the error in computing $A(X)$ since it is $A(X)$ that drives the inner loop to produce $P(X)$. This feature of the inner loop eliminates the requirement for further numerical differentiations and simultaneously requires a numerical integration.

Figure 27 presents the error incurred in performing the transformation and inversion of $A'(X)$ and the subsequent trapezoidal rule integrations employed here and in the main program to obtain $A(X)$. The error based on the local value of the function reaches a maximum of about seven percent when the limits of the numerical integration are located at $X = \pm 3$. Extending the limits to $X = \pm 6$ diminished the maximum error to about five percent thus demonstrating the necessity for extending the limits on the main program to $X = \pm 6$ or larger. It is noted that the error does not decrease with ΔX and remains relatively constant with ΔX.
decreasing. This must be attributed to the addition of the integrals of the asymptotic forms since Figure 26 demonstrates that the numerical scheme employed in the central section produces errors that diminish with \(\Delta x \).

The error curves of Figure 27 represent an extreme upper bound for the main program because the outer loop only requires the single transformation of \(P(\xi) \) into \(A'(X) \) and the results are smooth functions of \(X \) than were those employed here. Error checks of this type were also performed using the results and are reported in the discussion of the results, Section IV.
APPENDIX II

THE ASYMPTOTIC BEHAVIOR OF THE NUMERICAL RESULTS

The purpose of this Appendix is to present the numerical study which led to the selection of the boundary conditions and parameters of the numerical interval employed during the computation of the final data. The computations reported in this Appendix were performed on the interval

\[-6 \leq X \leq 6\]

with \(\Delta X = 0.05\) and \(H = 0.1\). The location of the outer edge was a variable. In order to decrease the computational time required and the cost, all ensuing computations were initiated with the solution, i.e., the \(A'(X)\) and \(P'(X)\) from a previous computation. The effects on the solution wrought by the various changes in the numerical procedure were measured by the relative agreement of the \(b_1\) curves. The constant \(b_1\) measures how precisely the numerical solution approaches the asymptotic predictions for the pressure, displacement thickness, and centerline velocity. The coefficient \(b_3\) of the second-order term of asymptotic expansion, Equations 62, 63, 64, and 65, is computed using Equations 93, 94, and 96. Seven different cases are reported, Figures 28 through 34, for comparison with the final results on Figure 15.

The \(b_6, b_7,\) and \(b_8\) values for the first case are presented on Figure 28. The shallow initial profile of Figure 24 initiated the computations and the outer edge of the layer was located at \(Z_a = 6\). The \(b_8\) values resulting from the asymptotic expansion of \(U(X,0)\) appear to be approaching the nominal value. The \(b_7\) values resulting from the asymptotic expansion of \(P(X)\) approach the nominal value then rapidly increase due to numerical error. The \(b_6\) values resulting from the asymptotic expansion of \(A(X)\) reach a maximum value about 10 percent above the nominal value of \(b_1\).

The first change in the main program subsequent to achieving the convergent numerical procedure was generated by the skin friction of Figure 25, which is noticeably larger than the predicted asymptotic value when the shallow initial velocity profile is employed to start.
Figure 28. Asymptotic Behavior: $Z_a = 6$, Shallow Velocity Profile
the computations. Improved computations of Case 2 were initiated using the velocity profile shown in Figure 24 with $Z_e = 6$. The centerline velocity and pressure results were slightly improved and the displacement thickness results, b_u, were significantly improved, as shown on Figure 29. The effect of the incorrect outer portion of the initial profile had propagated throughout the entire streamwise course of the lower deck while the lower portions of the velocity profiles were affected a much shorter distance.

To ensure that the outer edge-boundary condition was not being enforced prematurely, the outer edge of the layer was removed to $Z_e = 8$. The results of Case 3 indicate that $Z_e = 6$ is too shallow, for both the pressure and displacement thickness results came into closer agreement with the centerline velocity results, which remained relatively unchanged, as shown on Figure 30.

However, the rapid increase in the pressure results toward the downstream end of the numerical interval remained. The pressure shift at the upstream end of the interval to obtain the correct value of $A'(x)$ could have been the cause. The shift of the entire pressure curve by a constant ΔP produces a logarithmic term in $A'(x)$ through the Cauchy integral, Equation 78. Thus, if

$$\Delta A'(x) = -\frac{1}{\pi} \int_{a}^{b} \frac{\Delta P}{x-x_i} dx_i$$

then

$$\Delta A'(x) = -\frac{\Delta P}{\pi} \log \frac{|x-a|}{|x-b|}$$

over the finite numerical range of integration. The numerical procedure shifts the entire P(\text{x}) curve resulting from the inner loop until $A'(x)$ agrees with the predicted asymptotic behavior Equation 56. This shift could induce the rapid increase in the b_u curves of the previous Figures 28, 29, and 30 through the above logarithmic term.
Figure 29. Asymptotic Behavior: $z_e = 6$, Revised Velocity Profile
Figure 30. Asymptotic Behavior: $z_e = 8$, Revised Velocity Profile
The results of Case 4 demonstrate that the above hypothesis is false. The pressure shift was deleted and a value of \(b_1 \) was computed by averaging the values of \(b_{2j} \) and \(b_{2j} \) from the previous cycle of the iteration procedure. The pressure expansion for \(X = - \) Equation 65 with the cyclically updated value of \(b_1 \) was used to obtain the initial value of the pressure, \(P(a) \). The numerical procedure converged more slowly to the same results as Case 3 as a comparison of Figures 30 and 31 will show. The effect of shifting the pressure curve to obtain the asymptotic value of \(R'(x) \) is to damp the oscillations which occur during the cycles of the iteration procedure and thus increase the rate of convergence.

The computations to this point have not included the second-order terms of the asymptotic expansions of \(P(X) \) and \(A(X) \), which depend upon \(b_1 \), in the integrals of the asymptotic contributions to the Hilbert transformation, Equation 79. Case 4 demonstrated that the iteration procedure will converge without the pressure shift and employed a method to update the value of \(b_1 \) during each iteration cycle. Case 5 illustrates the effects of including all the second-order terms in the asymptotic contributions to the Hilbert transformation utilizing the \(b_1 \) obtained by the method of Case 4. The outer edge of the layer was removed to \(Z_e = 8 \) and \(A(x) \) was computed at \(Z = 8 \) to further ensure that the effects of the outer edge boundary condition were minimal. The inclusion of the second-order terms in the Hilbert transformation effectively reversed the previous results about the nominal value as shown on Figure 32. The pressure results of Case 5 rapidly decrease from the nominal value of \(b_1 \).

Case 6, Figure 33, is the useful result of a programming error. The sign of \(b_1 \) was inadvertently reversed before being input to the Hilbert transformation subroutine. Thus, the second-order terms of the asymptotic contributions are subtracted from the resulting integral. The results again indicate a rapid increase in \(b_1 \) and a greater variation from the nominal value of \(b_1 \) than the previous similar results.
Figure 31. Asymptotic Behavior: $Z_0 = 8$, The Pressure Shift
Figure 32. Asymptotic behavior: $z_e = 9$, Second-Order Terms
Figure 33. Asymptotic Behavior: $Z_e = 9$, Second-Order Terms
Taken together, Case 5 and 6 demonstrate that the numerical error in the Hilbert transformation is in the same sense as the second-order terms and that the inclusion of these terms is not an adjuvant procedure.

The final case was computed to ascertain the effects of removing the higher-order wake-centerline boundary condition, Equation 87, and employing in its stead \(R_1 = 0 \). The previous study by the momentum–integral method, Equation 88, had indicated that the centerline velocity would be slightly reduced and perhaps agreement with the pressure results of Case 5 could be attained. The results of the computation, shown on Figure 34, are disastrous. The three sets of values of \(b_1 \) diverge from each other as \(X \) increases.

An inspection of the preceding seven cases reveals that the values of \(b_1 \) obtained from the centerline velocity and displacement thickness data remain near the nominal value of \(-0.275\). The errors shown on the preceding Figures 28 through 33 are second-order and amount to less than one percent mismatch between the asymptotic expansions and the numerical data near the end of the interval. The pressure data have a much greater range about the nominal value and mismatches of five to ten percent occur in the small values of the pressure at \(X = 5 \).

The effects of the mismatches on the plate upstream may be measured by the changes in \(\lambda_1 \) and the constant appearing in the drag equation. The variation in \(\lambda_1 \) was less than 0.1 percent for Cases 1 through 6 and 1.2 percent for Case 7. The drag equation constant is somewhat more sensitive to the changes because it is the integral of the skin friction over the entire plate. Variations approaching 1.5 percent were found except for Case 1 which was initiated with the incorrect value of the skin friction. The data clearly shows that small changes a sufficient distance downstream induce even smaller changes in the flow upstream. This is also evident from the three \(b_1 \) curves which respectively approach the same value as \(X \) decreases.
Figure 34. Asymptotic Behavior: $z_e = 9$, Centerline Boundary Condition
The study of the second-order terms in the expansions of \(P(X), A(X), \) and \(U(X,0) \) as \(X \to \infty \) undertaken in this Appendix indicates that:

1. The second-order terms should not be included in the Hilbert integral,
2. The pressure shift should be retained,
3. The higher-order wake centerline boundary condition is necessary,
4. The outer edge of the layer should be extended as far as computational time required permits,
5. The initial velocity profile must be accurate, and
6. The downstream boundary conditions should be approached as precisely as possible.

The numerical procedure used to compute the final data was designed to meet the above criteria.
APPENDIX III

THE BOUNDARY-LAYER DIFFERENCE EQUATIONS

The boundary-layer subprogram solves Equation 41
\[
\frac{\partial \mathbf{u}_j}{\partial x} + \frac{\partial \mathbf{v}_j}{\partial z} = 0
\]
\[
U \frac{\partial \mathbf{u}_j}{\partial x} + V \frac{\partial \mathbf{u}_j}{\partial z} = - \frac{\partial P}{\partial x} + \frac{\partial^2 \mathbf{u}_j}{\partial z^2}
\]

for the velocity profile \(\mathbf{u}(z) \) by using a Crank-Nicholson type implicit finite difference procedure. Introduce the stream function \(\phi \) such that
\[
\frac{\partial \phi}{\partial x} = -V, \quad \frac{\partial \phi}{\partial z} = U
\]
and rewrite Equation 41 so that
\[
\frac{\partial^2 \mathbf{u}_j}{\partial z^2} + \beta = U \frac{\partial \mathbf{u}_j}{\partial x} - \frac{\partial \phi}{\partial x} \frac{\partial \mathbf{u}_j}{\partial z}
\]
(98)

where \(\beta = -\frac{\partial \phi}{\partial x} \).

Define \(\bar{u}_j \) as the velocity at the previous streamwise station, \(x-\Delta x \), and
\[
\bar{u}_j = u_j - 0.5 \Delta u_j
\]
where \(\Delta u_j = u_j - \bar{u}_j \)

and similarly define the \(F_j \). The subscript \(j \) denotes the \(z \)-direction distance at \(z = (j-1) \) H.

On substituting the preceding definitions into Equation 98 and using centered difference formulas we find that
\[
\bar{u}_{j+1} + 2\bar{u}_j + \bar{u}_{j-1} = \bar{u}_j \frac{\Delta u_j}{\Delta x} - \frac{\bar{u}_{j+1} - \bar{u}_{j-1}}{2 \Delta x} \frac{\Delta F_j}{\Delta x}
\]
or alternatively

\[
\frac{U_{j+1} - 2U_j + U_{j-1}}{H^2} - \frac{\Delta U_{j+1} - 2\Delta U_j + \Delta U_{j-1}}{2H^2} = \beta
\]

\[
F_j - \hat{F}_j
\]

\[
\frac{(u_j + \hat{u}_j)(u_j - \hat{u}_j)}{2\Delta x} - \left(\frac{U_{j+1} - u_j}{2H} - \frac{\Delta U_{j+1} - \Delta u_j}{4H} \right) = \frac{F_j - \hat{F}_j}{\Delta x}
\]

The matrix elements of the boundary layer subroutine are obtained by collecting the coefficients of \(U_{j+1}, U_j,\) and \(\Delta u_{j-1}\) in the above equation. By defining

\[
\sigma_1 = \left[2 + H^2 (u_j + \hat{u}_j)/2\Delta x \right]^{-1}
\]

\[
\sigma_2 = \sigma_1 H (F_j - \hat{F}_j)/2\Delta x
\]

\[
A_j = -\sigma_1 + \sigma_2
\]

\[
B_j = -\sigma_1 - \sigma_2
\]

and

\[
R_j = \sigma_1 \left[\beta H^2 + u_j - \hat{u}_j + H^2 \hat{u}_j (u_j + \hat{u}_j)/2\Delta x \right]
\]

\[
+ 0.5 \left[A_j (u_{j-1} - \hat{u}_{j-1}) + B_j (u_{j+1} - \hat{u}_{j+1}) \right]
\]

we obtain the difference equation

\[
B_j U_{j+1} + U_j + A_j U_{j-1} = R_j
\]

This tridiagonal matrix equation is solved by using Gaussian elimination to eliminate the \(A_j\) diagonal and back substitution to determine the velocity profile (Richtmeyer and Morton (1967)). If the difference between successive velocity profiles is less than the error.
tolerance, the iteration procedure has converged. If not, the velocity profile is integrated by the trapezoidal rule to obtain an updated stream function and the iteration procedure is repeated until the error tolerance is satisfied. Although not especially fast this procedure has been found to be stable and accurate for relatively large step size for a variety of boundary-layer problems.

The boundary conditions are enforced by prescribing values for specific elements of the matrix, the velocity and the R_j. The boundary condition on the wake centerline has been obtained by considering a Taylor series of the velocity

$$u_2 = u_1 + 0.5 \, H^2 \left(\frac{\partial \delta^2}{\partial z^2} \right)_1 + \ldots$$

and the momentum equation

$$\left(\frac{\partial \delta^2}{\partial z} \right)_1 = -\beta + u_1 \frac{d\delta}{dx}$$

for $Z = 0$. In difference form,

$$u_2 - u_1 = 0.5 \, H^2 \left[\beta + (u_1 - \dot{U}_1)/\Delta x \right]$$

which requires that

$$B_1 = -1$$

and

$$R_1 = -0.5 \, H^2 \left[\beta + u_1 \left(u_1 - \dot{U}_1 \right)/\Delta x \right]$$

Upstream on the plate, the skin friction is calculated by the same method from the formula

$$\left. \frac{\partial u}{\partial z} \right|_{z=0} = \frac{u_2}{H} + 0.5H \beta$$

101

Approved for Public Release
since $U_1 = 0$.

The boundary-layer subprogram has been used to compute the Goldstein inner wake with $Z_0 = 9$ and $H = .10$, $\Delta X = .05$ or $H = .05$, $\Delta X = .025$ for comparison with the results in Section IV. The pressure gradient for the Goldstein wake computation is zero and the main program consisted of a single loop which advanced the computation downstream. A linear velocity profile was used to start the computation at the trailing edge. The centerline velocity results for the two grid sizes are compared with the first term of Goldstein's expansion for the centerline velocity on Figure 35. The numerical results are shifted downstream from Goldstein's results because of the finite step size of the numerical computations. The shift in the centerline velocity decreases as the step size decreases. The computed velocities are less than 0.1 percent smaller than Goldstein's results for $X > 5$. Increasing the centerline velocity reported in the results, Section IV, by this amount would decrease the value of b_y and bring the b_y and b_A curves of Figures 15, 16, and 17 into closer agreement.
Figure 35. A Comparison of the Centerline Velocity for Goldstein's Inner Wake
BIBLIOGRAPHY

104

Approved for Public Release
BIBLIOGRAPHY (CONTINUED)

BIBLIOGRAPHY (CONTINUED)

Var Dyke, M., 1959. Second-order subsonic airfoil theory including edge effects. NACA Rept. 1274.