FOREWORD

This report was prepared by the University of Cincinnati under USAF Contract No. AF 33(616)-7450. This contract was initiated under Project No. 7380, "The Chemistry and Physics of Materials," Task No. 736005, "Compositional, Atomic and Molecular Analysis." The work was administered under the direction of the AF Materials Laboratory, Deputy Commander/Research and Engineering, Aeronautical Systems Division; Mr. F. F. Bentley was the Project Engineer.

This report covers work conducted from March, 1962, to May, 1963.

The work was performed at the Analytical Branch, AF Materials Laboratory, W-PAFB, Ohio, by Dr. Dieter C. Hummel, the Project Leader.

The author wishes to thank Miss Rita Wilmers, Miss Heide Trein, and Mr. Howard Rosenberg for their assistance in recording some of the infrared spectra used in this study. The author also wishes to thank Mr. J. val C. Salyer and the Monsanto Research Corporation for providing many of the samples studied during this work. Miss Alele Ross is acknowledged for extensive editing of this report.

Approved for Public Release
ABSTRACT

The infrared absorption spectra of 101 polymers, resins, waxes, plasticizers, monomers, and solvents have been investigated from 700 cm\(^{-1}\) to 350 cm\(^{-1}\). The absorption bands of the more important chemical families were incorporated into correlation charts. The structure of the substances investigated are discussed with respect to their infrared spectra.

This technical documentary report has been reviewed and is approved.

Freeman F. Bentley

Chief, Analytical Branch
Materials Physics Division
AF Materials Laboratory
TABLE OF CONTENTS

I. INTRODUCTION

II. EXPERIMENTAL
 A) Apparatus
 B) Materials
 C) Preparation of Samples

III. RESULTS
 A) Aliphatic Polyhydrocarbons
 1. Saturated Polyhydrocarbons
 a) Polyethylene
 b) Polypropylene
 c) Polybutene-1
 d) Polyisobutylene
 e) Poly(n-hexylpentene-1)
 2. Unsaturated Polyhydrocarbons
 a) Polybutadiene
 b) Polyisoprene
 B) Aromatic Polyhydrocarbons
 1. General Remarks on the Infrared Absorption of Aromatic Compounds
 2. Polystyrenes
 3. Copolymers of Styrene
 4. Poly-(alpha-methylstyrene)
 5. Ring-Substituted Polystyrenes
 6. Polyindene
 C) Halogenated Polyhydrocarbons

iv.

Approved for Public Release
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Chlorinated Polyhydrocarbons</td>
<td>42</td>
</tr>
<tr>
<td>a. Polyvinyl Chloride</td>
<td>44</td>
</tr>
<tr>
<td>b. Polyvinylidene Chloride</td>
<td>49</td>
</tr>
<tr>
<td>c. Other Chlorinated Polyhydrocarbons</td>
<td>53</td>
</tr>
<tr>
<td>2. Fluorinated Polyhydrocarbons, Polyfluoroolecarbons, and Polyfluorofluoroolecarbons</td>
<td>55</td>
</tr>
<tr>
<td>a. Polyvinyl Fluoride</td>
<td>55</td>
</tr>
<tr>
<td>b. Polyvinylidene Fluoride</td>
<td>55</td>
</tr>
<tr>
<td>c. Polytetrafluoroethylene</td>
<td>55</td>
</tr>
<tr>
<td>d. Polyvinylidene Fluoride</td>
<td>58</td>
</tr>
<tr>
<td>D) Alkyds and Other Resinous Esters</td>
<td>58</td>
</tr>
<tr>
<td>1. General Remarks on the Far Infrared Absorptions of Esters</td>
<td>58</td>
</tr>
<tr>
<td>2. Oil-free Alkyd Resins</td>
<td>60</td>
</tr>
<tr>
<td>3. Oil-modified Alkyd Resins</td>
<td>61</td>
</tr>
<tr>
<td>4. Terephthalic Acid Polysters</td>
<td>62</td>
</tr>
<tr>
<td>a. Polyethylene terephthalate</td>
<td>62</td>
</tr>
<tr>
<td>b. Polyester Resins Based Upon Terephthalic Acid</td>
<td>66</td>
</tr>
<tr>
<td>5. Styrenated Alkyd Resins and Vegetable Oils</td>
<td>67</td>
</tr>
<tr>
<td>6. Unsaturated Polyester Resins</td>
<td>67</td>
</tr>
<tr>
<td>7. Polycarbonates</td>
<td>68</td>
</tr>
<tr>
<td>8. Resin and Its Derivatives, Other Natural Resins</td>
<td>69</td>
</tr>
<tr>
<td>9. Polyvinyl Acetate</td>
<td>70</td>
</tr>
<tr>
<td>E) Polymers of Acrylic and Methacrylic Acids and Esters</td>
<td>71</td>
</tr>
<tr>
<td>1. Polymethylacrylic acid and Polymethacrylic acid; Salts of These Acids</td>
<td>71</td>
</tr>
</tbody>
</table>
Table of Contents (Cont'd)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Polyacrylic esters</td>
<td>71</td>
</tr>
<tr>
<td>3. Polymethacrylic esters</td>
<td>73</td>
</tr>
<tr>
<td>F) Cellulose Derivatives</td>
<td></td>
</tr>
<tr>
<td>1. Regenerated Cellulose and Cellulose Ethers</td>
<td>76</td>
</tr>
<tr>
<td>2. Cellulose Ethers</td>
<td>76</td>
</tr>
<tr>
<td>G) Polyethers and Ether Resins</td>
<td>77</td>
</tr>
<tr>
<td>1. Linear Aliphatic Polyethers</td>
<td></td>
</tr>
<tr>
<td>a. Polyoxymethylene</td>
<td>78</td>
</tr>
<tr>
<td>b. Polyoxethylene</td>
<td>78</td>
</tr>
<tr>
<td>c. Polyoxypolyene</td>
<td>82</td>
</tr>
<tr>
<td>2. Other, Ill-Defined Polyethers</td>
<td>82</td>
</tr>
<tr>
<td>3. Polyvinyl Ethers</td>
<td>83</td>
</tr>
<tr>
<td>4. Polyvinyl Acetals</td>
<td>84</td>
</tr>
<tr>
<td>5. Epoxides</td>
<td>85</td>
</tr>
<tr>
<td>6. Coumarone Resins</td>
<td>86</td>
</tr>
<tr>
<td>H) Phenolic Resins</td>
<td>86</td>
</tr>
<tr>
<td>I) Nitrogen Containing Resins and Polymers</td>
<td>87</td>
</tr>
<tr>
<td>1. Polyamides</td>
<td>87</td>
</tr>
<tr>
<td>2. Amino and Aride Formaldehyde Resins</td>
<td>92</td>
</tr>
<tr>
<td>3. Other Nitrogen Containing Resins and Polymers</td>
<td>94</td>
</tr>
<tr>
<td>a. Polynitriles and Isocyanates</td>
<td>94</td>
</tr>
<tr>
<td>b. Polyacrylonitrile</td>
<td>96</td>
</tr>
<tr>
<td>c. Polyvinylcarbazole</td>
<td>98</td>
</tr>
<tr>
<td>J) Silicones</td>
<td>98</td>
</tr>
<tr>
<td>K) Waxes and Asphalts</td>
<td>99</td>
</tr>
</tbody>
</table>

Approved for Public Release
TABLE OF CONTENTS (CONT'D)

L) Plasticizers
 1. Aliphatic Esters of Carboxylic Acids 100
 2. Phthalates 100
 3. Phosphates 102

M) Monomers 104

N) Solvents 107

IV. REFERENCES 108

APPENDIX A

Collection of Spectra of High Polymers, Resins, and related Substances in the 700-250 cm⁻¹ Region 125

APPENDIX B

Pictorial Spectral Charts of Polymers, Resins, and Related Materials 319
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Far Infrared Bands of Water Vapor.</td>
<td>6</td>
</tr>
<tr>
<td>Table 2</td>
<td>Far Infrared Bands of Polyethylene (PE).</td>
<td>13</td>
</tr>
<tr>
<td>Table 3</td>
<td>Far Infrared Bands of Isotactic and Atactic Polypropylene.</td>
<td>17</td>
</tr>
<tr>
<td>Table 4</td>
<td>Infrared Bands of 1,4-trans Polybutadiene.</td>
<td>22</td>
</tr>
<tr>
<td>Table 5</td>
<td>Bands Below 1000 cm⁻¹ Characteristic of Isotactic or Syndiotactic 1,3-Polybutadienes in the Crystalline State</td>
<td>22</td>
</tr>
<tr>
<td>Table 6</td>
<td>Far Infrared Bands of 1,3-Polybutadienes</td>
<td>24</td>
</tr>
<tr>
<td>Table 7</td>
<td>Far Infrared Bands of Polysoprenes</td>
<td>28</td>
</tr>
<tr>
<td>Table 8</td>
<td>Calculated Frequencies of Out-of-plane Ring Bending Vibrations Below 700 cm⁻¹ for Different Substituted Benzene Derivatives</td>
<td>30-31</td>
</tr>
<tr>
<td>Table 9</td>
<td>Variation of Infrared-Active Ring Deformation Vibrations with the Type of Substitution, According to Jakobsen.</td>
<td>33</td>
</tr>
<tr>
<td>Table 10</td>
<td>Position of the Out-of-plane Ring Deformation Vibration for Homosubstituted Benzene Derivatives according to Jakobsen.</td>
<td>35</td>
</tr>
<tr>
<td>Table 11</td>
<td>Far infrared Absorptions of Conventional and Isotactic Polystyrenes.</td>
<td>36</td>
</tr>
<tr>
<td>Table 12</td>
<td>Approximate Normal Modes of Homosubstituted Benzene Ring in the Far Infrared According to Zhang and Krinn.</td>
<td>37</td>
</tr>
<tr>
<td>Table 13</td>
<td>Far Infrared Bands of Polyvinyl Chloride.</td>
<td>46</td>
</tr>
<tr>
<td>Table 14</td>
<td>Possible Rotational Isomers of Meso and dl-2,3-Dichloropentanes According to Shimanouchi and Tsunoi.</td>
<td>47</td>
</tr>
<tr>
<td>Table 15</td>
<td>Far Infrared Absorptions of 2,3-Dichloropentanes</td>
<td>48</td>
</tr>
<tr>
<td>Table 16</td>
<td>Possible Formations of Polymer Chains in Conventional Polyvinyl Chloride</td>
<td>50</td>
</tr>
<tr>
<td>Table 17</td>
<td>Far Infrared Absorptions of Polyvinylidene Chloride.</td>
<td>52</td>
</tr>
</tbody>
</table>

Approved for Public Release
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.</td>
<td>Far Infrared Absorptions of Polytetrafluoroethylene.</td>
<td>57</td>
</tr>
<tr>
<td>19.</td>
<td>Far Infrared Absorptions of Polychlorotrifluoroethylene.</td>
<td>59</td>
</tr>
<tr>
<td>20.</td>
<td>Far Infrared Absorptions of Polyethylene Terephthalate.</td>
<td>61</td>
</tr>
<tr>
<td>21.</td>
<td>Infrared Bands of Polyethylene Terephthalate Sensitive to Crystallization According to Tadda et al.</td>
<td>65</td>
</tr>
<tr>
<td>22.</td>
<td>Properties of Different Polymethylmethacrylates.</td>
<td>74</td>
</tr>
<tr>
<td>23.</td>
<td>Far Infrared Absorptions of Helical, Crystalline Polychlorotrifluoroethylene (Delrin).</td>
<td>79</td>
</tr>
<tr>
<td>24.</td>
<td>Far Infrared Bands of Polychlorotrifluoroethylene.</td>
<td>81</td>
</tr>
<tr>
<td>25.</td>
<td>Far Infrared Absorptions of p-tert-Butylphenol Resin, According to Soda.</td>
<td>88</td>
</tr>
<tr>
<td>26.</td>
<td>Characteristic Infrared Bands of Secondary Amides.</td>
<td>90</td>
</tr>
<tr>
<td>27.</td>
<td>Far Infrared Absorption Bands of Polymethylacrylonitrile According to Liang and Krisan.</td>
<td>97</td>
</tr>
<tr>
<td>28.</td>
<td>Far Infrared Absorptions of Some Liquid Phosphoric Acid Esters Between 700 and 250 cm⁻¹.</td>
<td>103</td>
</tr>
<tr>
<td>29.</td>
<td>Far Infrared Absorptions of Alkenes According to Bentley and Wolfarth.</td>
<td>105</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1. Infrared Spectrum from 500-250 cm⁻¹ of Water Vapor. 126
Figure 2. Infrared Spectrum from 700-250 cm⁻¹ of a Cesium Bromide Plate. 127

Aliphatic Polyhydrocarbons

Figure 3. Infrared Spectra from 625-500 cm⁻¹ of Marlex 50 (Linear Polyethylene) and High Pressure Polyethylene (Branched). 128
Figure 4. Infrared Spectrum from 750-250 cm⁻¹ of Polypropylene (Low Molecular weight Oil). 129
Figure 5. Infrared Spectrum from 800-300 cm⁻¹ of Polypropylene (Partly Isotactic, Amorphous and Rubber-like). 130
Figure 6. Infrared Spectrum from 700-250 cm⁻¹ of Polypropylene (Isotactic, Crystalline and Biaxially Oriented). 131
Figure 7. Infrared Spectrum from 700-250 cm⁻¹ of Polybutene-1 (Isotactic and Crystalline). 132
Figure 8. Infrared Spectrum from 875-250 cm⁻¹ of Vistexen LM (Polyisobutylene). 133
Figure 9. Infrared Spectrum from 700-250 cm⁻¹ of Poly-1-Methylpentene-1 (Isotactic and Crystalline). 134
Figure 10. Infrared Spectrum from 750-250 cm⁻¹ of Butarez 25 (Atactic Polybutadiene in Liquid State). 135
Figure 11. Infrared Spectrum from 700-300 cm⁻¹ of cis-1,4-Polybutadiene (small amounts of other structures also present). 136
Figure 12. Infrared Spectrum from 700-300 cm⁻¹ of trans 1,4-Polybutadiene (small amounts of other structures also present). 137
Figure 13. Infrared Spectrum from 625-500 cm⁻¹ of Hyar 10k2 (Butadiene-Acrylonitrile Copolymer; 70:30). 138
Figure 14. Infrared Spectrum from 800-250 cm⁻¹ of Hevea (cis,1,4-Polyisoprene). 139
Figure 15. Infrared Spectrum from 800-250 cm\(^{-1}\) of Shell Isoprene 300 x B (cis-1,4-polyisoprene).

Figure 16. Infrared Spectrum from 775-250 cm\(^{-1}\) of Balata (trans-1,4-Polyisoprene).

Figure 17. Infrared Spectrum from 775-250 cm\(^{-1}\) of Gutta Percha (Crystalline trans-1,4-Polyisoprene).

Aromatic Polyhydrocarbons

Figure 18. Infrared Spectrum from 725-250 cm\(^{-1}\) of Polystyrene (Atactic, Amorphous).

Figure 19. Infrared Spectrum from 700-250 cm\(^{-1}\) of Polystyrene (Isotactic, crystalline).

Figure 20. Infrared Spectrum from 725-250 cm\(^{-1}\) of Zeolon 50 (Styrene-Methyl Methacrylate Copolymer 50:50).

Figure 21. Infrared Spectrum from 700-250 cm\(^{-1}\) of Poly-α-Methylstyrene.

Figure 22. Infrared Spectrum from 600-250 cm\(^{-1}\) of Poly-p-Methylstyrene (Atactic).

Figure 23. Infrared Spectrum from 700-250 cm\(^{-1}\) of Poly-p-Isopropylstyrene (Atactic).

Figure 24. Infrared Spectrum from 700-300 cm\(^{-1}\) of Gmac 201 (Vinylidene-Acrylonitrile Copolymer 70:30).

Figure 25. Infrared Spectrum from 700-250 cm\(^{-1}\) of Gebagan of J100 (Polypindene).

Halogenated Polyhydrocarbons

Figure 26. Infrared Spectrum from 760-250 cm\(^{-1}\) of Genatherm Ralke (Polyvinylchloride).

Figure 27. Infrared Spectrum from 750-250 cm\(^{-1}\) of VLV-VC-GF (Vinyl Chloride-Vinyl Acetate Copolymer 85:15).

Figure 28. Infrared Spectrum from 800-250 cm\(^{-1}\) of Dow Saran (Polyvinylidene Chloride, with an Ester Type Copolymer).
Figure 29. Infrared Spectrum from 800-250 cm⁻¹ of Chlorobutyl (Low-Chlorinated Polyisobutylene).

Figure 30. Infrared Spectrum from 750-350 cm⁻¹ of Chlorinated High-Pressure Polyethylene.

Figure 31. Infrared Spectrum from 800-250 cm⁻¹ of Nylomon 90 (Sulfochlorinated High Pressure Polyethylene).

Figure 32. Infrared Spectrum from 800-250 cm⁻¹ of Pliofile Kalls (Rubber Hydrochloride).

Figure 33. Infrared Spectrum from 700-250 cm⁻¹ of Permut 390 (Chlorinated Rubber).

Figure 34. Infrared Spectrum from 750-250 cm⁻¹ of Teslar (Polyvinylfluoride).

Figure 35. Infrared Spectrum from 800-300 cm⁻¹ of Polyvinylidene Fluoride.

Figure 36. Infrared Spectrum from 750-275 cm⁻¹ of Hostafon TF 14 (Polytetrafluoroethylene).

Figure 37. Infrared Spectrum from 750-250 cm⁻¹ of Kel-F 827 (Chlorotrifluoroethylene-Vinylidene Fluoride Copolymer).

Figure 38. Infrared Spectrum from 700-250 cm⁻¹ of Hostafon G2 (Polyvinylidene Fluoride).

Alkyds and Other Resinous Esters.

Figure 39. Infrared Spectrum from 800-300 cm⁻¹ of Alkydial BD (Phthalic Acid Polyester; oil-free).

Figure 40. Infrared Spectrum from 725-250 cm⁻¹ of Diallal Fathalate (Prepolymer).

Figure 41. Infrared Spectrum from 725-250 cm⁻¹ of an Alkyd Resin, L2% Coconut Oil (Aftalal HD5).

Figure 42. Infrared Spectrum from 700-250 cm⁻¹ of Linseed Oil Alkyd Resin (Jegalyd TAP).

Figure 43. Infrared Spectrum from 700-250 cm⁻¹ of Soybean Oil Alkyd Resin (Alkydal T Extra).
Figure 44. Infrared Spectrum from 700–300 cm\(^{-1}\) of Alkyd Resin with 80% Tall Oil. (Tall Oil Alkyd L 1765).

Figure 45. Infrared Spectrum from 700–250 cm\(^{-1}\) of Epoxy-Modified Dehydrated Castor Oil.

Figure 46. Infrared Spectrum from 800–300 cm\(^{-1}\) of Isophthalic Alkyd Resin with Soybean Oil. (Jaegalyd).

Figure 47. Infrared Spectrum from 750–250 cm\(^{-1}\) of Hostaphan (Ethylene Glycol-Terephthalic Acid Polyester).

Figure 48. Infrared Spectrum from 500–300 cm\(^{-1}\) of Wire Enamel on Base of Terephthalic Acid Polyester.

Figure 49. Infrared Spectrum from 700–300 cm\(^{-1}\) of Alkydal V696 (Styrenated Alkyd Resin).

Figure 50. Infrared Spectrum from 800–250 cm\(^{-1}\) of Vinyl-toluene-Modified Vegetable Oil (Setal 5000 SS-60).

Figure 51. Infrared Spectrum from 700–300 cm\(^{-1}\) of Roskydal 780 (Unsaturated Polyester Resin).

Figure 52. Infrared Spectrum from 700–300 cm\(^{-1}\) of Roskydal 550 (Unsaturated Polyester Resin).

Figure 53. Infrared Spectrum from 800–250 cm\(^{-1}\) of Nairofol (Poly carbonate on Base of Siphenol A).

Figure 54. Infrared Spectrum from 725–275 cm\(^{-1}\) of Rosin (Abietic Acid).

Figure 55. Infrared Spectrum from 900–250 cm\(^{-1}\) of Rosin Glyceryl Ester (Ganesco 0).

Figure 56. Infrared Spectrum from 700–250 cm\(^{-1}\) of Corepal 15% (Maleinate Resin).

Figure 57. Infrared Spectrum from 700–250 cm\(^{-1}\) of Guaiac Resin (a mixture of 70% Guaiaconic Acid and 30% other Acid and Neutral Compounds).

Figure 58. Infrared Spectrum from 700 – 230 cm\(^{-1}\) of Rosic-Modified Phenolic Resin (Nastolyn).

Figure 59. Infrared Spectrum from 800–300 cm\(^{-1}\) of Polyvinyl Acetate.
Acrylates

Figure 60. Infrared Spectrum from 710-286 cm\(^{-1}\) of Polyacrylic Acid.

Figure 61. Infrared Spectrum from 800-300 cm\(^{-1}\) of Liquirol 30 (Sodium Salt of Polyacrylic Acid).

Figure 62. Infrared Spectrum from 800-300 cm\(^{-1}\) of Polyethylene Acrylate.

Figure 63. Infrared Spectrum from 700-250 cm\(^{-1}\) of Polyacryl 4021 (Copolymer of Ethyl Acrylate with 10% Vinyl Chloromethyl Ether).

Figure 64. Infrared Spectrum from 710-286 cm\(^{-1}\) of Polytbutyl Acrylate.

Figure 65. Infrared Spectrum from 700-250 cm\(^{-1}\) of Polymethyl Acrylate.

Figure 66. Infrared Spectrum from 700-250 cm\(^{-1}\) of Isotactic Polymethyl Methacrylate.

Figure 67. Infrared Spectrum from 700-250 cm\(^{-1}\) of Syndiotactic Polymethyl Methacrylate.

Figure 68. Infrared Spectrum from 700-250 cm\(^{-1}\) of Atactic Polymethyl Methacrylate.

Figure 69. Infrared Spectrum from 725-250 cm\(^{-1}\) of Polyethyle Methacrylate.

Figure 70. Infrared Spectrum from 725-250 cm\(^{-1}\) of Poly-Butyl Methacrylate.

Figure 71. Infrared Spectrum from 725-250 cm\(^{-1}\) of Poly-Isobutyl Methacrylate.

Cellulose Derivatives

Figure 72. Infrared Spectrum from 750-250 cm\(^{-1}\) of Regenerated Cellulose (Celophane).

Figure 73. Infrared Spectrum from 750-250 cm\(^{-1}\) of Dow Methocel (Methyl Cellulose).

Figure 74. Infrared Spectrum from 750-300 cm\(^{-1}\) of Dow Ethocel (Ethyl Cellulose).

xiv

Approved for Public Release
Figure 75. Infrared Spectrum from 750-300 cm\(^{-1}\) of Cellulose Acetate (Low Acetyl Content).

Figure 76. Infrared Spectrum from 725-250 cm\(^{-1}\) of Kodapac 4 (Cellulose Triacetate).

Figure 77. Infrared Spectrum from 715-250 cm\(^{-1}\) of Kodapac 2.

Figure 78. Infrared Spectrum from 700-250 cm\(^{-1}\) of Cellulose Tripropionate.

Figure 79. Infrared Spectrum from 800-300 cm\(^{-1}\) of Duco Cement (Cellulose Nitrate).

Polyethers and Ether Resins

Figure 80. Infrared Spectrum from 700-250 cm\(^{-1}\) of Delrin (Polyoxymethylene).

Figure 81. Infrared Spectrum from 750-250 cm\(^{-1}\) of Polyoxymethylene Glycol (Liquid).

Figure 82. Infrared Spectrum from 700-300 cm\(^{-1}\) of Polyethylene Oxide (Crystalline).

Figure 83. Infrared Spectrum from 700-300 cm\(^{-1}\) of Polyoxypropylene Glycol (Liquid).

Figure 84. Infrared Spectrum from 700-250 cm\(^{-1}\) of Kuntharsz PK 10 (Acetalddehyde Resin).

Figure 85. Infrared Spectrum from 700-250 cm\(^{-1}\) of Kuntharsz AP (Acetophenone-Formaldehyde Resin).

Figure 86. Infrared Spectrum from 700-250 cm\(^{-1}\) of Polyvinyl Ketone Ether (Atactic, Amorphous).

Figure 87. Infrared Spectrum from 700-250 cm\(^{-1}\) of Oppanol C (Polyvinyl Isobutyl Ether).

Figure 88. Infrared Spectrum from 750-300 cm\(^{-1}\) of Mowital F10 (Polyvinyl Formal).

Figure 89. Infrared Spectrum from 750-250 cm\(^{-1}\) of Mowital BMK (Polyvinyl Polyval).

Figure 90. Infrared Spectrum from 800-250 cm\(^{-1}\) of Epoxin 162 (Aliphatic Epoxy Resin).
Figure 91. Infrared Spectrum from 750-250 cm⁻¹ of Paraplex G-50 (Size-Reduced Soy-Bean Oil).

Figure 92. Infrared Spectrum from 700-300 cm⁻¹ of Epikote 828 (Low Molecular Weight Epoxy Resin on Base of Eponol A).

Figure 93. Infrared Spectrum from 700-250 cm⁻¹ of Epikote 1087 (High Molecular Weight Epoxy Resin on Base of Epoxyol A).

Figure 94. Infrared Spectrum from 725-225 cm⁻¹ of Oumar Resin 225 (Probably Isotene-Gomacrine Resin).

Phenolic Resins

Figure 95. Infrared Spectrum from 725-300 cm⁻¹ of Alonol B29 x (Green Novolac).

Figure 96. Infrared Spectrum from 800-250 cm⁻¹ of Resorcinol-Formaldehyde Novolac.

Figure 97. Infrared Spectrum from 700-300 cm⁻¹ of Limophen B60 (Phenol Resin).

Figure 98. Infrared Spectrum from 700-300 cm⁻¹ of Durophen 241 V (Plasticized Phenol Resin).

Figure 99. Infrared Spectrum from 800-250 cm⁻¹ of Resorcinol-Formaldehyde Resin (Alkaline-Condensed).

Figure 100. Infrared Spectrum from 850-250 cm⁻¹ of Phenol-Resorcinol Formaldehyde Resin (Alkaline Condensed).

Nitrogen-Containing Resins and Polymers

Figure 101. Infrared Spectrum from 750-250 cm⁻¹ of Polyamide 6, Polyeaoctilactam (Duoretan A).

Figure 102. Infrared Spectrum from 750-250 cm⁻¹ of Polyamide 6, Polyeaoctilactam (Maxially Oriented).

Figure 103. Infrared Spectrum from 700-300 cm⁻¹ of Polyamide 8 (Polystyrylactam).

Figure 104. Infrared Spectrum from 725-225 cm⁻¹ of Kilsan (Polyamide 11, Polyyamidylactam).

xvi
Figure 105. Infrared Spectrum from 750-300 cm⁻¹ of Polyamide 6,6.

Figure 106. Infrared Spectrum from 750-250 cm⁻¹ of Polyamide 6,10.

Figure 107. Infrared Spectrum from 800-300 cm⁻¹ of Ultramid 6A (Copolyamide 6 + 6, 6).

Figure 108. Infrared Spectrum from 750-300 cm⁻¹ of Ultramid 6 (Terephthalamide 6 + 6, 6 - Diaminodicyclohexylmethane Adipate).

Figure 109. Infrared Spectrum from 750-250 cm⁻¹ of Versamid 125 (Polyamide from Di- and Trimerised Fatty Acids and a Diamine).

Figure 110. Infrared Spectrum from 700-250 cm⁻¹ of Butylated Urea-Formaldehyde Resin.

Figure 111. Infrared Spectrum from 700-250 cm⁻¹ of Maprenal TX (Melamine-Formaldehyde Resin).

Figure 112. Infrared Spectrum from 700-250 cm⁻¹ of Cibamin 30-75 (Ull-Modified Melamine Resin).

Figure 113. Infrared Spectrum from 750-300 cm⁻¹ of Maprenal HM (Sancogumamine-Formaldehyde Resin).

Figure 114. Infrared Spectrum from 725-250 cm⁻¹ of Sanocote M-5-0-P (Aromatic Sulphonamide-Formaldehyde Resin).

Figure 115. Infrared Spectrum from 700-250 cm⁻¹ of Durethan, U₉ (Polyurethane from Hexamethylenediamine and Butanediol-₁,₄).

Figure 116. Infrared Spectrum from 750-250 cm⁻¹ of Adiprene L-167 (Polyether-Alcohol Reacted with Toluene Disocyanate).

Figure 117. Infrared Spectrum from 750-250 cm⁻¹ of Adiprene L-106 (Polyether-Alcohol Reacted with Toluene Disocyanate).

Figure 118. Infrared Spectrum from 700-275 cm⁻¹ of Desmodur TT Stabil (Masked Isocyanate from Dimerised Toluene Disocyanate and Phenol).

Figure 119. Infrared Spectrum from 700-250 cm⁻¹ of Desmodur AP Stabil (Masked Isocyanate from Toluene Disocyanate and Phenol).
Figure 120. Infrared Spectrum from 750-250 cm$^{-1}$ of Eylene
DiK (1,4:5,1'-Methylene Di-1,4-Polyisocyanate).

Figure 121. Infrared Spectrum from 700-305 cm$^{-1}$ of a
Copolymer of Acrylonitrile with 6% Vinyl
Acetate.

Figure 122. Infrared Spectrum from 700-775 cm$^{-1}$ of
Polyvinyl Carbazole (Ivanol M 170).

Figure 123. Infrared Spectrum from 750-250 cm$^{-1}$ of Dow
Corning Silicone (Polydimethylsiloxane).

Figure 124. Infrared Spectrum from 700-300 cm$^{-1}$ of Silicone
704 (Polydimethylsiloxane).

Waxes and Asphalts

Figure 125. Infrared Spectrum from 800-300 cm$^{-1}$ of
Stearane 975 (Higher Aliphatic Hydrocarbons).

Figure 126. Infrared Spectrum from 700-250 cm$^{-1}$ of
Montan Wax (Mixture of High Molecular
Weight Fatty Acids and Esters).

Figure 127. Infrared Spectrum from 700-300 cm$^{-1}$ of
Beeswax (Mixture of High Molecular Weight
Esters and Fatty Acids).

Figure 128. Infrared Spectrum from 700-250 cm$^{-1}$ of
Carnauba Wax (Mixture of High Molecular
Weight Aliphatic Hydrocarbons, Alcohols
and Esters).

Figure 129. Infrared Spectrum from 750-450 cm$^{-1}$ of
Candelilla Wax (Mixture of High Molecular
Weight Hydrocarbons and Ester Type and
Acid Resins).

Plasticizers

Figure 130. Infrared Spectrum from 800-250 cm$^{-1}$ of
Di-2-Ethylhexyl Adipate.

Figure 131. Infrared Spectrum from 800-250 cm$^{-1}$ of
Monoplex DGS (Di-2-Ethylhexyl Sebacate).

Figure 132. Infrared Spectrum from 750-300 cm$^{-1}$ of
Dimethyl Phthalate.

xviii

Approved for Public Release
Figure 131. Infrared Spectrum from 750-250 cm\(^{-1}\) of Diethyl Phthalate.

Figure 132. Infrared Spectrum from 725-250 cm\(^{-1}\) of Bi-n-Butyl Phthalate.

Figure 133. Infrared Spectrum from 725-250 cm\(^{-1}\) of Bi-isobutyl Phthalate.

Figure 134. Infrared Spectrum from 725-250 cm\(^{-1}\) of Bi-ethyl Phthalate.

Figure 135. Infrared Spectrum from 725-250 cm\(^{-1}\) of Bi-n-Buty! Phthalate.

Figure 136. Infrared Spectrum from 725-250 cm\(^{-1}\) of Bi-ethyl Phthalate.

Figure 137. Infrared Spectrum from 750-300 cm\(^{-1}\) of Bi-n-Octyl Phthalate.

Figure 138. Infrared Spectrum from 750-300 cm\(^{-1}\) of Bi-2-Ethylhexyl Phthalate.

Figure 139. Infrared Spectrum from 675-250 cm\(^{-1}\) of Bi-2-Ethyl Hexyl Isobutyl Phthalate.

Figure 140. Infrared Spectrum from 675-250 cm\(^{-1}\) of Bi-n-Octyl Phthalate.

Figure 141. Infrared Spectrum from 750-300 cm\(^{-1}\) of Diisodecyl Phthalate (Santizer 214).

Figure 142. Infrared Spectrum from 750-275 cm\(^{-1}\) of Santizer 160 (Butyl Benzy! Phthalate).

Figure 143. Infrared Spectrum from 675-250 cm\(^{-1}\) of Diphenyl Phthalate.

Figure 144. Infrared Spectrum from 725-250 cm\(^{-1}\) of Dimethylglycol Phthalate.

Figure 145. Infrared Spectrum from 750-300 cm\(^{-1}\) of Santizer 117 (Methylphthalyl Ethylglycolate).

Figure 146. Infrared Spectrum from 750-250 cm\(^{-1}\) of Santizer EL (Ethylphthalyl Ethylglycolate).

Figure 147. Infrared Spectrum from 750-250 cm\(^{-1}\) of Santizer EL5 (Butylphthalyl Butylglycolate).

Figure 148. Infrared Spectrum from 750-250 cm\(^{-1}\) of Tri-n-Butyl Phosphate.

Figure 149. Infrared Spectrum from 700-250 cm\(^{-1}\) of Triisobutyl Phosphate.
Figure 150. Infrared Spectrum from 700-2500 cm$^{-1}$ of Cellulose IMP (Tris (6-Chloroethyl) Phosphate).

Figure 151. Infrared Spectrum from 750-2500 cm$^{-1}$ of Sanitizer 110 (2-Ethylhexyl Diphenyl Phosphate).

Figure 152. Infrared Spectrum from 750-2500 cm$^{-1}$ of Trisphenyl Phosphate.

Figure 153. Infrared Spectrum from 725-2500 cm$^{-1}$ of Sanitizer 110 (2-Ethylhexyl Diphenyl Phosphate).

Figure 154. Infrared Spectrum from 750-2500 cm$^{-1}$ of α-Trisphenyl Phosphate.

Figure 155. Infrared Spectrum from 750-2500 cm$^{-1}$ of Trisphenyl Phosphate (Technical Grade, Mixture of Isomers).

Figure 156. Infrared Spectrum from 750-2500 cm$^{-1}$ of Trisphenyl Phosphate.

Figure 157. Infrared Spectrum from 700-2500 cm$^{-1}$ of Trisphenyl Phosphate.

Nonmeres

Figure 158. Infrared Spectrum from 700-2500 cm$^{-1}$ of Isoprene.

Figure 159. Infrared Spectrum from 700-2500 cm$^{-1}$ of Chloroprene (2-Chlorobutadienes).

Figure 160. Infrared Spectrum from 700-3500 cm$^{-1}$ of Styrene.

Figure 161. Infrared Spectrum from 700-2500 cm$^{-1}$ of α-Methyl Styrene.

Figure 162. Infrared Spectrum from 700-3500 cm$^{-1}$ of VinylButene (Technical Grade).

Figure 163. Infrared Spectrum from 750-3000 cm$^{-1}$ of Vinyl Acetate.

Figure 164. Infrared Spectrum from 750-2500 cm$^{-1}$ of Diallyl Malate.

Figure 165. Infrared Spectrum from 750-3000 cm$^{-1}$ of Diallyl Phthalate.
Figure 166. Infrared Spectrum from 700-300 cm\(^{-1}\) of Maltol Isophthalate.

Figure 167. Infrared Spectrum from 700-250 cm\(^{-1}\) of Methyl Acrylate.

Figure 168. Infrared Spectrum from 700-250 cm\(^{-1}\) of Ethyl Acrylate.

Figure 169. Infrared Spectrum from 750-300 cm\(^{-1}\) of n-Butyl Acrylate.

Figure 170. Infrared Spectrum from 700-250 cm\(^{-1}\) of Methyl Methacrylate.

Figure 171. Infrared Spectrum from 700-250 cm\(^{-1}\) of Ethyl Methacrylate.

Figure 172. Infrared Spectrum from 700-300 cm\(^{-1}\) of n-Butyl Methacrylate.

Figure 173. Infrared Spectrum from 700-300 cm\(^{-1}\) of Acrylonitrile.

Figure 174. Infrared Spectrum from 700-275 cm\(^{-1}\) of Methylacrylonitrile.

Solvents

Figure 175. Infrared Spectrum from 700-325 cm\(^{-1}\) of Cyclohexane.

Figure 176. Infrared Spectrum from 800-300 cm\(^{-1}\) of Paraffin oil or Nujol.

Figure 177. Infrared Spectrum from 700-250 cm\(^{-1}\) of Methylene Chloride.

Figure 178. Infrared Spectrum from 700-300 cm\(^{-1}\) of Chloroform.

Figure 179. Infrared Spectrum from 700-300 cm\(^{-1}\) of Deuterated Chloroform.

Figure 180. Infrared Spectrum from 700-300 cm\(^{-1}\) of Carbon Tetrachloride.

Figure 181. Infrared Spectrum from 800-300 cm\(^{-1}\) of n-Butanol.
Figure 182. Infrared Spectrum from 700-300 cm$^{-1}$ of Methyl Acetate.

Figure 183. Infrared Spectrum from 800-300 cm$^{-1}$ of Ethyl Acetate.

Figure 184. Infrared Spectrum from 700-250 cm$^{-1}$ of n-Butyl Acetate.

Figure 185. Infrared Spectrum from 675-300 cm$^{-1}$ of 1,4-Dioxane.

Figure 186. Infrared Spectrum from 700-300 cm$^{-1}$ of Carbon Disulfide.

Figure 187. Infrared Spectrum from 700-300 cm$^{-1}$ of Acetone.

Figure 188. Infrared Spectrum from 750-250 cm$^{-1}$ of Dimethyl Sulfoxide.

Figure 189. Infrared Spectrum from 700-300 cm$^{-1}$ of Dimethylformamide.

Figure 190. Infrared Spectrum from 700-300 cm$^{-1}$ of Benzene.

Figure 191. Infrared Spectrum from 700-275 cm$^{-1}$ of Xylenes.

Figure 192. Infrared Spectrum from 700-300 cm$^{-1}$ of Pyridine.
Chart I.	Absorption Frequencies of Aliphatic Polyhydrocarbons.	320
Chart II.	Absorption Frequencies of Aromatic Polyhydrocarbons.	321
Chart III.	Absorption Frequencies of Halogenated Polyhydrocarbons.	322
Chart IV.	Absorption Frequencies of Alkyds and Other Resinous Esters.	323
Chart V.	Absorption Frequencies of Acrylics and Polystyrene Esters.	324
Chart VI.	Absorption Frequencies of Cellulose Derivatives.	325
Chart VII.	Absorption Frequencies of Polyethers and Other Resins.	326
Chart VIII.	Absorption Frequencies of Polysilicone and Amino Resins.	327
Chart IX.	Absorption Frequencies of Plasticizers: Anthalates.	328
Chart X.	Absorption Frequencies of Plasticizers: Phosphates and Phosphites.	329
Chart XI.	Absorption Frequencies of Monomers.	330
I. INTRODUCTION

The great value of infrared spectroscopy in the structure elucidation and analysis of technical polymers and resins has been well established. Hundsdoerff and Kagarise and Weinberger were the first to publish collections of infrared spectra of technical polymers and resins. Krim[3] studied eight different polymers. He made a complete vibrational analysis of these compounds and proposed possible structures. Hummel[4] has published two books on polymeric materials. One book contains a comprehensive and systematic collection of spectra; the other enumerates distinguishing spectral characteristics of these compounds. In 1961, Brown et al[5] and Nyquist[6] published spectral data on newly synthesized polymers and resins.

All of the aforementioned authors' studies of polymers were limited to the NaCl range between 5000 - 667 cm\(^{-1}\). This present paper reports the results of a study of polymers, resins, waxes, plasticizers, and monomers in the region of 700 - 250 cm\(^{-1}\).

For the spectroscopist who is interested in molecular vibrations of polymers in terms of group theory and normal coordinate treatment, the authors who have discussed these topics are listed in the reference portion of this report.3,8-15

To date, there has been only one publication on the reflection of plastics in the far infrared.15 The spectrophotometer used was rather simple. Beststrahlen filters were used to produce monochromatic radiation and transmittance and reflection were measured near 150, 310, 210, 195, 160, 120, 105, 80, and 60 cm\(^{-1}\). The spectra depicted in the article were so small that it was impossible to observe any bands unique to the

Manuscript released by the author 15 July 1963 for publication as an ASD Technical Documentary Report.

1
plastics recorded. Spectra in the far infrared are sensitive to slight changes in structure and often contribute valuable information in identifying complex molecules and mixtures. Moreover, each additional absorption band in the far infrared complements the structural information already obtained with the rocksalt spectrum and results in a more reliable identification of a system.

Absorptions in the far infrared are mainly due to bending vibrations of the skeleton and to stretching and bending vibrations of heavy atoms such as the halogens, silicon or metals. The transition energies are low, and interactions within and between molecules may have a strong influence on the frequency and intensity of certain absorption bands. This implies a sensitivity of far infrared spectra to the physical state of a substance and the conformation of its molecules. This is advantageous where polymers with the same chemical structure but different conformation (tacticity) or crystallinity must be analyzed. On the other hand, strong but random interactions within and between polar molecules are clearly disadvantageous from an analytical aspect since they tend to produce a strong absorption background and a broadening of the absorption bands. All these factors affecting spectral features in the far infrared will be more fully explained in succeeding paragraphs.

As was mentioned previously, there are interactions within and between molecules which can affect a spectrum. These are intra- and intermolecular interactions. The former is initiated by mechanical as well as electrical coupling; the latter is usually of an electric nature: dipole-dipole interactions and van der Waals forces.

An example of very strong forces between the molecules is that of polyamides (polymers with intermolecular hydrogen bridges). Intermolecular
forces are strongest in crystalline polymers. The vibrations in one molecule or monomer unit cannot be discussed without consideration of the same vibrations in the neighboring molecule or monomer unit. This close association between the molecules causes the well-known splitting of certain bands of crystalline polymers.

A well-known example of the influence of intramolecular interaction is the carbonyl stretching vibration. Its frequency position and intensity depends principally upon the polarity of the intramolecular environment. Weaker forces usually have too small an influence to be observed with bands of higher energy. However, the vibrations in the far infrared have a low vibrational energy and are much more liable to change in frequency position or intensity by weak forces. This influence is strongly heightened by a symmetrical conformation of the polymer chain, i.e., the repeating units being in the same plane or in an n-fold helix.

Crystallinity always causes a certain symmetry within the chain. However, isotactic and syndiotactic configuration of a polymer usually force the monomer units into a symmetrical arrangement independently of three-dimensional crystallinity. Isotactic configuration of the asymmetric carbon atoms in a chain frequently produces a helical conformation in the chain. This conformation may be considered as a one-dimensional crystallinity, and may exist even in an amorphous sample. Both effects have their influence on a spectrum. It is therefore possible to distinguish between "crystalline" (in the sense of three-dimensional crystallinity) and "tactic" absorption bands. The former ones disappear in molten or dissolved material, the latter ones remain if the conformation within the chain is unaltered during the melting or dissolving process. Polystyrene is a good example of a polymer which exhibits these effects. The bands at 565 cm⁻¹
and 496 cm\(^{-1}\) of the crystalline material are very weak or disappear in dissolved or swollen isotactic polystyrene. These bands are apparently sensitive to crystallinity. On the other hand, an absorption band at 588 cm\(^{-1}\) is the same in the spectra of crystalline and amorphous isotactic polystyrene. It is not observed in the spectrum of atactic polystyrene. This band is apparently specific for isotacticity and is caused principally by intramolecular interactions.

As to the intensity of far infrared absorption bands, polymers and resins can be classified roughly into three groups. The first group includes molecules containing heavy polar atoms. Examples are halogenated polyhydrocarbons and silicones. These compounds have polar bonds and give rise to very strong absorption bands. Their spectra in the long wavelength region may be recorded as films 0.005 to 0.01 mm in thickness. The second group comprises practically all compounds with less heavy and polar heteroatoms like oxygen and nitrogen. Aromatic structures also are included in this group. Examples are polyesters, polyethers, phenolic resins, amino and amido resins, and aromatic polyhydrocarbons. These compounds give rise to absorption bands of medium intensity. Sample thicknesses around 0.1 mm are needed to obtain significant spectra. The third group consists of compounds having only structures of low polarity. Examples are aliphatic polyhydrocarbons of all kinds. These molecules usually have only weak absorption bands in the far infrared. Sample pathlengths between 0.3 mm and several millimeters are needed. The lower value holds for polymers with high steric order, especially crystalline ones.
II. EXPERIMENTAL

A. Apparatus

The spectra shown in this report were recorded with a Perkin-Elmer Spectrophotometer Model 102 described by Marshall. To reduce the loss of energy due to atmospheric absorption, the entire instrument was purged with dry nitrogen. The wavenumber reproducibility is 0.5 cm⁻¹ over the entire range.

In the present work, many of the spectra of samples were scanned using devices such as screens or cells with paraffin oil or solvents in the reference beam to compensate for absorption background and scattered light. Therefore, these spectra can only be used on a qualitative basis since the transmittances may not be true. (indicated by x on spectrum)

Sometimes water bands are evident in the spectra/even though purging of the instrument with nitrogen was carried out. These are not to be confused with sample absorption bands. Therefore, a spectrum of water vapor is depicted in Figure 1 and band positions are enumerated in Table 1.

B. Materials

Most of the materials used were contributed by the manufacturers and are of a technical grade. The plasticisers and monomers originated partly from a collection owned by the Monsanto Research Corporation, Dayton, Ohio, and partly from the Institut für Physikalische Chemie und Kolloidchemie, University of Cologne, Cologne, Germany. All of the eutectic polymers, with the exception of isotactic polypropylene, were research samples contributed by Rohm and Haas GmbH, Darmstadt, Germany, and by Monsanto Chemical Company, St. Louis, Missouri. The solvents used were analytical grade.
TABLE I

Wavenumber (cm⁻¹)	526.23	502.15	477.68	458.05	443.90	422.21	412.61	395.12
Wavenumber (cm⁻¹)	423.14	397.31	394.51	374.80	370.26	354.17	351.88	349.92
Wavenumber (cm⁻¹)	313.38	335.34	328.34	327.78	323.90	303.30	303.00	302.04
Wavelength (Å)	29.122	29.820	30.456	30.508	30.874	32.970	33.003	33.108
Wavenumber (cm⁻¹)	296.91	289.65	282.45	280.46	278.55	276.29	267.73	266.94
Wavelength (Å)	31.375	31.524	31.604	31.656	34.090	36.194	37.351	37.652
Wavenumber (cm⁻¹)	266.29	254.05	248.01	245.05	237.93	226.38	223.82	221.74
Wavelength (Å)	37.553	39.361	40.321	40.708	43.873	44.174	44.679	45.098

*These bands are found in the work of Randall et al.\(^{17}\) and only the most intense are reported here. The accuracy is 0.05 cm⁻¹.
C. Preparation of Samples

The infrared spectra of polymers studied in this report were obtained as films cast from solutions, pressed or melted films, microtomed samples, paraffin oil mulls or as KBr discs.

1. Films Cast from Solutions

The majority of the polymers studied were recorded as films. The films were prepared by dissolving these compounds in a suitable organic solvent (see individual spectra for solvent used), pouring them onto a glass plate and evaporating off the solvent. If the films adhered too tightly to the surface of the glass, they were heated with water until they could be drawn off.

Resins were cast directly on cesium bromide plates approximately 5 mm in thickness. To check if interfering bands were present due to these plates in the region of 700-350 cm\(^{-1}\), a spectrum was recorded (Figure 2). Cesium bromide used in these studies was found to be transparent in this range.

In the case of polyamides, films were difficult to cast and handle. Formic acid was used as a solvent, and opaque and nonuniform films resulted. To correct this, these films were soaked with paraffin oil while still on the glass plate and then carefully removed with the help of a razor blade to a cesium plate. The spectra of the samples were recorded and compensation for the paraffin oil adhering to the film was made by placing an equivalent amount of oil on a CsBr plate in the reference beam.

Polymers, like polyoxymethylene, were dissolved in dimethyl sulfoxide. Then they were precipitated from a methanol or ethanol solution. The precipitate was washed at least five times to remove the high boiling solvent.
and then dried in a vacuum oven to remove the alcohol. The resultant dried powder was prepared for recording by using either KB or milling techniques.

Polymers often retain the solvents used to prepare films. Drying in a vacuum oven at elevated temperatures most of the time was sufficient to drive them off. Sometimes, however, extraction with a low-boiling non-solvent for the polymer had to be employed. Water was found to be an efficient extractant for dimethyl formamide, dimethyl sulfoxide, anhydrous ethanol, and benzene.

2. Pressed or Melted Films

Non-polar polymers, like polyethylene, require sample thicknesses up to a few millimeters in order to obtain a significant spectrum. Films of these thicknesses are best prepared in a die, heated at a temperature about 20°C above the softening temperature of the polymer. Since many polymers will oxidize at higher temperatures, the pressing should be done in an inert atmosphere. If a high degree of crystallinity in the polymer sample is desired, the cooling is done quite slowly. Quenched samples can be crystallized by heating them about 20°C below their melting point for a few hours.

With some caution it is possible to prepare a film between cesium bromide plates. The plates are first preheated on a heating stage to a temperature just above the melting point of the polymer. The plates are taken apart with a pair of tongs and the beads or scrapes are put on one of the plates and immediately covered by the other. Pressing of the so-called sandwich with a cork produces the desired film. Fortunately, cesium bromide and iodide are not as sensitive to sudden temperature changes as sodium chloride. However, these plates can still deform at higher temperatures and
caution must be taken when applying the technique just described.

Stereoregular poly-α-olefins have high melting points and are subject to oxidation. If a suitable die is unavailable, the finely divided polymer is mixed with paraffin oil into a thick slurry. The slurry is placed between cesium bromide plates and heated slowly. Part of the paraffin oil seeps out, leaving the polymer in the form of a soft, rubbery sheet. The degree of crystallinity in a sample is thus reduced by this handling procedure.

3. Microwaved Samples

Polymers such as vulcanised rubbers, cured polyester resins, and polytetrafluoroethylene, will not dissolve in conventional solvents or melt when heated. Consequently, these polymers, if of the right pliability, can be cut into thin slices of suitable thickness without prior treatment using a microtome. Some rubbers and very soft materials have to be cooled in a dry ice-acetone mixture to obtain a certain degree of rigidity before microtoming can be accomplished. Hard polymers are plasticized with suitable swelling agents before cutting.

4. Paraffin Oil Mills

Paraffin oil or "waxoil" exhibits only weak absorptions in the 700 - 300 cm\(^{-1}\) region (Figure 176). This makes it an ideal carrier for finely divided compounds. Good spectra have been obtained for polyoxymethylene (Delrin), polyamides, stereoregular poly-α-olefins and polyvinyl chloride using the mill technique. Compensation for the paraffin oil in these samples can be accomplished by using a comparable amount of oil in the reference beam.

5. KBr Disks

Disks of potassium bromide are transparent to about 250 cm\(^{-1}\) (40
microns). Hence, they can be used as carriers for materials in the far infrared. Unfortunately, large concentrations of samples are often required which results in turbid or opaque disks. If compensation for the scattered light is not possible through the use of screens, a lower concentration of sample is employed and scale expansion utilized. Insoluble, hard materials can be reduced to a fine powder or shavings by scraping their surfaces with a razor blade. Savoosy and Thompson recommend the use of a diamond spatula. After the polymer is in this state, the XIR technique is applied.
III. RESULTS

The infrared spectra of 191 polymers, resins, monomers, plasticizers, monomers and solvents have been investigated from 700 - 250 cm\(^{-1}\). All these compounds have been separated into chemically related groups and their spectra discussed in regard to their analytical use in chemical and structural problems below.

A. Aliphatic Polyhydrocarbons (Chart I)

A thorough study of the far infrared spectra of aliphatic hydrocarbons was published by Bentley and Wolfarth.12 Our findings concerning aliphatic polyhydrocarbons in this investigation are, to a certain degree, in agreement with their observations. Straight-chain paraffins of high molecular weight have just one band around 950 cm\(^{-1}\) which is strong enough to be observed in samples 2 mm thick. Branched alkanes have around four bands which are stronger, intensity-wise, than the one observed for the straight chain polymers recorded at the same thickness. Hence, poly-\(\alpha\)-olefins can easily be distinguished from polyethylenes.

It is important to remember that the bands found in polymer spectra are not only due to their physical state but also are the result of orientation effects. The spectra of polymers with a certain steric order within the chain, like the nematic poly-\(\alpha\)-olefins, or with a certain degree of three-dimensional crystallinity have to be discussed in terms of symmetry elements and group theory. A method for the determination of normal vibrations of polymer molecules with a helical configuration was described by Takeda.11,12 This method is also applicable to molecules with an infinitely extended planar zigzag chain such as crystalline polyethylene.
1. Saturated Polyyhydrocarbons

 a. Polyethylene. There are two types of polyethylenes, namely, high-pressure polyethylene (low-density) and low-pressure polyethylene (high-density). The former is produced by a process developed by ICI of England and is a highly branched polymer. It contains both short (mainly $-\text{CH}_{2}-\text{CH}_{2}$) and long side chains. The latter is produced by the Ziegler method or by other processes applying low pressures of ethylene and special catalysts. This product is unbranched.

 The infrared spectra of the polyethylenes have been studied in greater detail than other polymers. However, most of the information involves the rocking range. A review giving the abstracts of forty-one publications on polyethylenes was reported by Wood and Leung. Of particular interest were quantitative methods described by several authors for identifying polyethylenes by infrared procedures and by density measurements.

 Concerning the far infrared region, Hugg et al. were the first to observe weak and complex bands in the spectrum of high-pressure polyethylene with maxima at about 591 cm$^{-1}$ (16.9 μm) and 558 cm$^{-1}$ (17.9 μm). They gave as a probable assignment of this group of bands structures the general type $-\text{CH} = \text{CH}-\text{CH}_{2}-\text{CH} = \text{CH}-\text{H} = \text{CH}_{2}-\text{H} = \text{CH}_{2}-\text{H} = \text{CH}_{2}$. Borello and Mosef interpreted these absorption maxima and an additional band at 513 cm$^{-1}$ (19.4 μm), as a pure methyl band system. Krim et al. also found weak bands in the far infrared spectrum of high pressure polyethylene. Our results for polyethylenes (Figure 3) are tabulated along with Krim's in Table 2. Tentative assignments are made for some of the vibrations.

 Bands near 630 and 569 cm$^{-1}$ in Marlex 50 were tentatively assigned to a vibration of terminal vinyl groups. This seems reasonable since these bands were also found by Bentley and Wolfarth in alkenes having this same
<table>
<thead>
<tr>
<th>Wavenumbers (cm⁻¹)</th>
<th>This Report</th>
<th>High-pressure PE (cm⁻¹)</th>
<th>Marlex 60 (cm⁻¹)</th>
<th>Probable Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>630</td>
<td>630</td>
<td>---</td>
<td>---</td>
<td>-CH₂-CH₂</td>
</tr>
<tr>
<td>570</td>
<td>585</td>
<td>570</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>545</td>
<td>538</td>
<td>545</td>
<td>---</td>
<td>-CH₂-CH₂</td>
</tr>
<tr>
<td>1600</td>
<td>---</td>
<td>---</td>
<td>1590</td>
<td>---</td>
</tr>
<tr>
<td>430</td>
<td>425</td>
<td>430</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>200</td>
<td>Not studied</td>
<td>Not studied</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Contrails

terminal growing. The band at 538 cm⁻¹ found in the spectrum of high-pressure polyethylene has already been assigned by Rugg et al.33 and Borello and Massa34 as being due to a skeleton vibration involving methyl groups. Our spectral data are in agreement with their assignment based on relative band intensities at 540 cm⁻¹. Branched polyethylenes show a more intense band than the unbranched. This is logical since the former contains a higher concentration of methyl groups (20 - 30 per 1000 carbon atoms) than the latter (less than 1.5 methyl groups per 1000 carbon atoms). Bentley and Wolfarth35 observed a band at 538 cm⁻¹ in long-chain alkanes. The intensity of the band decreased with increasing chain length which is consistent with our findings above.

b. Polypropylene. Propylene can be polymerized with Lewis acids yielding low molecular weight oils or amorphous, rubberlike materials. Ziegler-type catalysts, namely, complexes of titanium halides with aluminum or beryllium alkyls, cause the formation of high molecular weight, crystalline polymers which have gained wide application in industry. These polymers have a stereoregular structure with respect to the asymmetric carbon atoms in the chain. According to Natta35, vinyl polymers with the same steric configuration, d or l, of the asymmetric carbon atoms in the chains are called "isotactic," those with an alternating configuration of the consecutive asymmetric carbon atoms giving d, l, d, l sequences are called syndiotactic. "Atactic" vinyl polymers do not have any regularity in the distribution of the configurations of the asymmetric carbon atoms along a polymer chain. A discussion of the definition of an atactic with respect to polypropylenes was given by Felt et al.36
Cationically produced polypropylene in its structure probably comes closest to being an "atactic" polypropylene. Its infrared spectrum in the roxsalt range was discussed by Liang and Watanabe37 and Inoue et al.38 The spectrum reflects only the vibrations of a single monomer unit due to the low intermolecular forces and the random conformation of the monomer units in the chains. In the far infrared, the spectrum of "atactic" polypropylene (Figure li) shows a broad band with maxima at 575 cm⁻¹ and 557 cm⁻¹. These bands probably are due to the skeleton vibrations involving the methyl side-groups. Teobald39 also found a broad absorption band between 450 cm⁻¹ and 620 cm⁻¹ with a maximum at 542 cm⁻¹ with a similar type propylene.

Natta and Pacchioni40 stated that there are three different types of stereoregular, crystallizable polypropylenes:

1. Atactic head-to-tail polypropylene characterized by a helical structure of the chain with three monomer units per repeat and by a melting temperature of 170°C.

2. Syndiotactic head-to-tail polypropylene, characterized by a "double helix" of the chain with four monomer units per repeat, and by a melting temperature very close to that of the atactic material.

3. Head-to-head and tail-to-tail polypropylene produced by alternating copolymerization of ethylene and cis butene-1.

Atactic polypropylene is produced technically in very large quantities. It is capable of crystallizing into different polymorphic modifications.41,42 However, these different forms have the same infrared spectrum. The spectra of normal protonated and deuterated atactic polypropylenes, either crystalline or amorphous (melted or quenched), oriented and unoriented, were studied by a number of authors37,39,41,57 in the roxsalt range. Assignment of bands to specific vibrations differ among these authors.
The only figures given to date for the far infrared absorption of isotactic polypropylene were published by Tobin.39 His values, together with our findings, are shown in Table 3. An assignment for the far infrared bands of amorphous and crystalline isotactic polypropylene has not been published, but it is normal to assume that a bending vibration of the \[\text{H}_3\text{C} \quad \text{O} \quad \text{C} \quad \text{C} \] skeleton involving the methyl side-group is infrared active and occurs in the range of about 550 cm\(^{-1}\) to 650 cm\(^{-1}\).

In the simplest case of an amorphous polypropylene with no steric order of the asymmetric carbon atoms (Figure 4), there is only one complex band, broadened by random mechanical coupling of this bending vibration with other chain vibrations. Isotactic configuration of the asymmetric carbon atoms primarly introduces a short-range order, whether helical or not, and consequently, defines interactions between the monomer units. This has a strong influence on the frequency of the C-C-C bending vibration and on its envelope, too. Usually, there is band splitting due to different phase relations of the compound (Figure 5).

Crystallinity introduces a still higher molecular order and therefore a further change in the spectrum (Figure 6). If we make the assumption that the band at 655 cm\(^{-1}\) found in isotactic polypropylene is characteristic for the helical arrangement of the chains, then the band at 527 cm\(^{-1}\), occurring only in the spectrum of crystalline polypropylene, is characteristic for the phase relations in the three-dimensional crystal. If, however, the band at 655 cm\(^{-1}\) is characteristic for isotactic sequences in non-helical chains, then the band at 527 cm\(^{-1}\) is characteristic for a helical conformation.
TABLE 3

Far Infrared Bands of Isotactic and Atactic Polypropylenes

<table>
<thead>
<tr>
<th></th>
<th>Tobin[39] (cm(^{-1}))</th>
<th>This Report (cm(^{-1}))</th>
<th>This Report (cm(^{-1}))</th>
<th>Tobin[39] (cm(^{-1}))</th>
<th>This Report (cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atactic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>315 (w)</td>
<td>-</td>
<td>312 (?) (vw)</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td>408 (vw)</td>
<td>390 (w)</td>
</tr>
<tr>
<td></td>
<td>560-620 (br)</td>
<td>475 (? , vw)</td>
<td>465 (m)</td>
<td>460 (v)</td>
<td>455 (m)</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>580 (vw)</td>
<td>475 (m, sh)</td>
<td>537 (w)</td>
<td>527 (m)</td>
</tr>
<tr>
<td></td>
<td>552</td>
<td>557 (m)</td>
<td>550-575 (+, br)</td>
<td>530 (vw)</td>
<td>575 (vw, br, sh)</td>
</tr>
<tr>
<td>575 (m, br)</td>
<td>-</td>
<td></td>
<td>615</td>
<td></td>
<td></td>
</tr>
<tr>
<td>613 (w)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>690 (w)</td>
<td>694</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symbols: *w* = weak; *vw* = very weak; *sh* = shoulder; *m* = medium; *br* = broad.

The far infrared spectra of the molten isotactic polypropylene and of the syndiotactic polypropylene are not available.
Syndiotactic polypropylene was described by Natta et al.37,38 and is probably identical to the modification of polypropylene found by Addink and Dainton.4,2 Its spectrum in the rocksalt range is very similar to that of isotactic polypropylene. It is distinguished only by a band at 867 cm\(^{-1}\) not occurring in the spectrum of the isotactic material. No spectral data are available for syndiotactic polypropylene.

Dissyndiotactic (head-to-head, tail-to-tail) polypropylene was described by Natta et al.58 Its spectrum has not been published so far.

c. Polybutene-1. Complexes of titanium halides with aluminum alkyls or other catalysts described by Ziegler and Natta (see reference 35) generally polymerize 1-alkenes into stereoregular polymers. With butene-1, a crystalline isotactic polymer is formed which differs in its chemical structure from isotactic polypropylene only by the side groups, i.e., ethyl groups are present rather than methyl. The crystal structure of the most stable form of polybutene-1 was described by Natta et al.59 It is very similar to that of isotactic polystyrene and isotactic polypropylene. The unit cell is rhombohedral and contains eighteen monomer units in six helices. There are three monomer units in one repeat. The strongest band at 513 cm\(^{-1}\) in its far infrared spectrum (Figure 7) is probably due to the C-C-G bending vibration involving the tertiary carbon atom. A complete vibrational analysis for the spectrum of polybutene-1 has not been published.

d. Polyisobutylene. The monomer unit of polyisobutylene,

\[
\text{CH}_3
\]

-\text{CH}_2-\text{C} - \text{CH}_3

, does not contain an asymmetric carbon atom. The only possibilit-

\[
\text{CH}_3
\]

Approved for Public Release
ties of a regular structure are, therefore, head-to-tail and head-to-head tail-to-tail arrangements of the monomer units in the chains. The infrared spectra of HEJ polymers were studied by Dainton and Sutherland.60 According to these authors, polyisobutylene is a head-to-tail polymer with mainly tertiary butyl and isopropene groups as end groups:

\[
\text{H}_3\text{C} - \text{C} - \left(\text{CH}_2 - \text{C}\right)_{n} - \text{C} = \text{CH}_2
\]

Nelson61 studied the infrared absorptions of the CH groups in polyisobutylene. Fuller et al62 studied the chain structure by the X-ray fiber patterns and found a fiber period of 18.63 Å. The repeating unit along the chain contains eight monomer units arranged in a helix.

The far infrared spectrum of polyisobutylene (Figure 8) shows only weak absorption bands. A band around 510 cm-1, according to Bentley and Wolfarth19, is characteristic for 3,3-disubstituted alkanes. A corresponding band is found in the spectrum of polyisobutylene at 527 cm-1. As other highly branched hydrocarbons, polyisobutylene shows a number of other absorption bands in the far infrared whose assignment to certain skeleton vibrations is not as yet clarified.

e. Poly(\textit{\textalpha}-methylpentene-1). In certain cases, also branched \textit{\textalpha}-alkanes can be polymerised with stereospecific catalysts of the Ziegler type. Poly(\textit{\textalpha}-methylpentene-1) was obtained by this process, and is a highly crystalline, high-melting polymer with an isotactic configuration of the asymmetric carbon atom. The far infrared spectrum (Figure 9) is rather similar to that of crystalline isotactic polypropylene (Figure 6).
It is not unlikely that this is due to a bending vibration of the isopropyl side group which is similar to the bending vibration of the methyl side groups of amorphous and crystalline isotactic polypropylene.

Also, the splitting into three components may be due to a similar structure of the helical chains.

2. Unsaturated Polyhydrocarbons

a. Polybutadienes. Polybutadienes obtained with radical initiation or by other non-stereospecific catalysts contains three different steric structures in its chains:

\[
\begin{align*}
\text{1,4 cis} & \quad \text{cis-CH}_2\text{-CH=CH-CH}_2\text{-} \\
\text{1,4 trans} & \quad \text{trans-CH}_2\text{-CH=CH-CH}_2\text{-} \\
\text{1,2} & \quad \text{-CH}_2\text{-CH=CH-CH}_2\text{-}
\end{align*}
\]

(967 cm\(^{-1}\))

(990 cm\(^{-1}\), 912 cm\(^{-1}\))

''Broad band with components at about 775, 780 (strongest) and 890 cm\(^{-1}\`).''

The characteristic bands of these unsaturated groups originate from out-of-plane vibrations of the hydrogen atom attached to the double bond (Kaminski and Bristain, Sheppard and Sutherland).

The portion of the three different structures in conventional polybutadienes varies within certain limits with the kind of catalyst, and with the reaction temperature. A number of infrared spectrophotometric methods for the quantitative determination of the different monomer units in polybutadienes were published. The method proposed by Kummer and
Schmalz71,72 seems to be the best.

Conventional polybutadienes are amorphous and are either low molecular weight oils or higher molecular weight elastomers. By the application of stereospecific catalysts, butadiene can be polymerized to yield four different highly crystalline and highly stereoregular polymers: 1,4-cis; 1,4-trans; 1,2-isotactic; and 1,2-syndiotactic polybutadiene.

Preparation and properties of 1,4-cis polybutadiene were described by Natta et al.73 The compound 1,4-trans polybutadiene can be obtained by certain catalyst systems76,78, or by isomerization of cis or mixed cis-trans polybutadiene under the influence of ultraviolet76, or \(\gamma\)-radiation77,78 and in the presence of stabilizers. The reaction product still contains about 5 percent cis units. Crystalline 1,4-trans polybutadiene occurs in two different enantiomorphous modifications.75 Nikitin et al.79,80 studied these modifications more closely and found a temperature range of 55-70°C for the transformation of modification I into modification II. The latter melts between 110°C and 130°C. Isotactic and syndiotactic 1,2-polybutadiene were prepared by Wilke81 and by Natta and his collaborators.82,83

The infrared spectra of the stereoregular polybutadienes were studied by several authors.75,79,86,88,85 Table 4 shows the infrared bands of 1,4-trans polybutadiene which are sensitive to changes in crystallinity according to Nikitin and coauthors.79,80 Fairly strong bands at 9.49 and 9.23 microns mainly arise from the crystalline modification I whereas the band at 6.10 microns arises partly from modification I and partly from modification II. Table 5 shows the bands above 10 microns characteristic for isotactic or syndiotactic 1,2-polybutadienes in the crystalline state according to Morero et al.84

21

Approved for Public Release
TABLE 4

Infrared Bands of 1,4-trans Polybutadiene

<table>
<thead>
<tr>
<th>"Crystalline Bands"</th>
<th>"Amorphous Bands"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength (μ)</td>
<td>Wavenumber (cm⁻¹)</td>
</tr>
<tr>
<td>7.49</td>
<td>1335</td>
</tr>
<tr>
<td>8.10 I + II</td>
<td>1235</td>
</tr>
<tr>
<td>6.92</td>
<td>1121</td>
</tr>
<tr>
<td>9.49 I</td>
<td>1057</td>
</tr>
<tr>
<td>12.93 I</td>
<td>773</td>
</tr>
</tbody>
</table>

These bands are sensitive to changes in crystallinity. The Roman Numerals I and II denote the two crystal modifications.

TABLE 5

Bands Below 1000 cm⁻¹ Characteristic of Isotactic or Syndiotactic 1,2-Polybutadienes in the Crystalline State

<table>
<thead>
<tr>
<th>Isotactic</th>
<th>Syndiotactic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength (μ)</td>
<td>Wavenumber (cm⁻¹)</td>
</tr>
<tr>
<td>10.6</td>
<td>943</td>
</tr>
<tr>
<td>11.3</td>
<td>885</td>
</tr>
<tr>
<td>11.4**</td>
<td>694</td>
</tr>
</tbody>
</table>

* Bands common to both were omitted. **Also in solution, but weaker.
Goldblum and Shipman85 were the first to investigate the far infrared absorptions of 1,4-polybutadienes and various deuterated 1,4-polybutadienes. They prepared the cis-1,4 polybutadienes by a stereospecific catalyst and the trans isomers by isomerization of the cis isomers by ultraviolet light. In Table 6, the figures found by Goldblum and Shipman85 are compared with our own. The samples of the former authors were cast from benzene solutions. It appears from their spectra that they were amorphous. The sample of a conventional tactic polybutadiene examined in this report (Figure 10) and the sample of a high cis polybutadiene (Figure 11) were also amorphous. The 1,4-trans polybutadiene (Figure 12), however, crystallized during the drying of the film in a vacuum oven. The two sharp and distinct bands at 440 cm-1 and 375 cm-1 of the crystalline 1,4-trans polybutadiene (modification I) does not appear in the spectrum of a dissolved or amorphous sample, and may, therefore, also be used for the determination of crystallinity (compare Wibitin et al79,80 and Table 4).

Unfortunately, amorphous cis-1,4 polybutadiene has practically no far infrared absorptions which are of any analytical value. The only analytical band for a direct determination of the cis content of polybutadiene is still that at about 740 cm-1.

Far infrared data of crystalline cis-1,4 polybutadiene and 1,2-polybutadienes are not available to date.

b. Polysoprenes. 2-Substituted 1,3-butadienes of the type

\[
\begin{align*}
\text{H} & \quad 1 \quad \delta \text{=S} \text{CH}_2 \\
& \quad 2 \quad \text{H}_2\text{O} \quad \text{X}
\end{align*}
\]
TABLE 6
For Infrared Bands of 1,4-Polybutadienes

<table>
<thead>
<tr>
<th></th>
<th>1,4-cis</th>
<th>1,4-trans</th>
<th>Conventional Polybutadiene (mixture of isomers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colub and Shipman This Report</td>
<td>Colub and Shipman This Report</td>
<td>This Report</td>
<td></td>
</tr>
<tr>
<td>(cm⁻¹)</td>
<td>(cm⁻¹)</td>
<td>(cm⁻¹)</td>
<td>(cm⁻¹)</td>
</tr>
<tr>
<td>700 (w)</td>
<td>approx. 700 (w, b)</td>
<td>700 (w)***</td>
<td>-</td>
</tr>
<tr>
<td>680-730 (m, b)</td>
<td>680-730 (m, b)</td>
<td>680-730 (m, b)</td>
<td>680-730 (m, b)</td>
</tr>
<tr>
<td>580-625 (w, vh)</td>
<td>580-625 (w, vh)</td>
<td>580-625 (w, vh)</td>
<td>580 (v)</td>
</tr>
<tr>
<td>600 (w, b)</td>
<td>600 (w, b)</td>
<td>600 (w, b)</td>
<td>600 (v)</td>
</tr>
<tr>
<td>520 (v, b)</td>
<td></td>
<td></td>
<td>520 (v, b)</td>
</tr>
<tr>
<td>470 (w, b)</td>
<td></td>
<td></td>
<td>470 (w, b)</td>
</tr>
<tr>
<td>390 (w, b)</td>
<td></td>
<td></td>
<td>390 (w, b)</td>
</tr>
<tr>
<td>375 (m)</td>
<td></td>
<td></td>
<td>375 (m)</td>
</tr>
</tbody>
</table>

Symbols: m=medium; w=weak; vh=very weak; b=broad; vb=very broad

*The sample was probably amorphous
**Crystalline sample
***Probably cis-isomer

Approved for Public Release
polymerize according to four different mechanisms, yielding four different isomeric structures:

\[\begin{align*}
1,1\text{-} \text{cis} & \quad (12 \mu) \\
1,1\text{-} \text{trans} & \quad (11.9 \mu)
\end{align*} \]

\[\begin{align*}
1,2 & \quad (10.1 \mu \text{ and } 11 \mu) \\
3,1 & \quad (11.25 \mu)
\end{align*} \]

The wavelengths given for the different structures denote the absorption maxima of the hydrogen out-of-plane vibrations of the unsaturated group in amorphous polyisoprene (\(X = \text{CH}_3\)). The position of these maxima depends on the type of the substituent \(X\) (compare polychlorobutadiene, \(X = \text{Cl}\)) and also on the physical state of the compound. Both 1,2- and 3,1-polyisoprenes contain asymmetric carbon atoms—in the formulas denoted with asterisks—and consequently are able to form isotactic and syndiotactic chains.

All natural polyisoprenes are 1,4-polymer and stereoregular within the chains. The band at 11.25 \(\mu\) is not due to 1,4-units.\(^{65,67}\) Neoprene rubber is a cis 1,4-polyisoprene; gutta-percha and balata are trans 1,4-polyisoprenes.\(^{68}\) Its infrared spectrum, however, is practically identical with that of gutta-percha\(^{69}\) which is a trans 1,4-polyisoprene. All natural
polyisoprenes contain certain amounts of unsaturated compounds and polypeptides; hence they must be isolated and purified prior to their spectroscopic examination.

Isoprene can be polymerized by radicals, alkali metals, "Alfin" catalysts and Lewis acids. The products obtained by these methods are not stereoregular but contain various amounts of the different isomeric monomer units in the polymer chains. The portion of these isomeric units in a polymer depends on the type of catalyst and also on the polymerization temperature. Alkali metals yield fairly uniform polymers. Sodium polyisoprene, for example, contains mainly 1,4 units. Lithium metal and aluminum trialkyl-titanium halide complexes are stereospecific and this allows the preparation of sterically uniform polymers. The first "synthetic natural rubber" with a pure cis-1,4 structure produced on a technical scale were "Ameripol SN"90 and "Coral Rubber."91

The infrared spectrum of natural and synthetic polyisoprenes was studied by a large number of authors.67,68,69,71,79,90-98 cis-1,4 polyisoprene crystallizes when stretched or at low temperatures. The velocity of crystallization is fastest at -26°C. The most obvious changes in the infrared spectrum during crystallization is the shift of the ≡C-H vibration from 11.95 μ to about 11.8 μ and the shift of a skeleton vibration at 8.8 μ to about 8.9 μ. The absorptivity of both bands is higher in the crystalline state.

The infrared spectrum of amorphous trans-1,4 polyisoprene (gutta-percha) is very similar to that of amorphous cis-1,4 polyisoprene. The main differences are listed below:

<table>
<thead>
<tr>
<th>trans 1,4-polyisoprene</th>
<th>cis 1,4-polyisoprene</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.9 μ, 12.1 μ (doublet)</td>
<td>11.95 μ (s)</td>
</tr>
<tr>
<td>8.6 μ (m)</td>
<td>9.2 μ</td>
</tr>
<tr>
<td></td>
<td>8.8 μ (m)</td>
</tr>
</tbody>
</table>

26
Trans-1,4 polyisoprene crystallizes in two modifications. The α-form is stable at room temperature, and the "natural" form of gutta-percha. It can be transformed into the β-form by heating the sample above 65°C and subsequent quenching. The α-form is characterized by sharp bands at about 11.35 μm, 11.6 μm, and 12.45 μm; β-gutta-percha by bands at 11.4 μm, 12.6 μm, and 13.1 μm. According to Horne et al, a content of more than 10% trans-1,4 structures in cis-1,4 polyisoprene can be revealed by spectral differences in the range between 8 μm and 10.5 μm.

Seem at al studied deuterium cis-1,4-polyisoprene and found an absorption band at 15.2 μm which is a C=O stretching vibration and corresponds to the vibration at about 12 μm in the proto cis-1,4 polyisoprene.

Saunders and Smith were the first who published data on the far infrared spectra of polyisoprenes. Horne et al showed the far infrared absorptions of natural and synthetic cis-1,4 polyisoprene. The spectra of these authors are collected in Table 7 together with our own results (see Figure 3). The strongest band in all spectra occurs between 570 cm⁻¹ and 600 cm⁻¹ and is very likely a C=O–CH₃ bending vibration. Another fairly intense band, some 70–100 wavenumbers lower, is probably a C=O–OH₂ bending vibration, coupling with the first one. The other bands may belong to C-C bending vibrations.

9. Aromatic Polynuclear Compounds (Chart II)

The infrared spectra of benzene and its derivatives have been widely studied. Useful in the structure evaluation of aromatics are bands sensitive to positions of substituents and types of substituents.
<table>
<thead>
<tr>
<th></th>
<th>cis-1,4</th>
<th>trans-1,4 **</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AMORPHOUS</td>
<td>CRYSTALLINE</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>(6507)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>595 sh</td>
<td>595 sh</td>
<td>595</td>
</tr>
<tr>
<td>593 sh</td>
<td>590</td>
<td></td>
</tr>
<tr>
<td>575</td>
<td>575</td>
<td>570</td>
</tr>
<tr>
<td>565 sh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>510</td>
<td>500</td>
</tr>
<tr>
<td>492</td>
<td></td>
<td></td>
</tr>
<tr>
<td>480</td>
<td>475</td>
<td>480</td>
</tr>
<tr>
<td>442</td>
<td>447</td>
<td>455</td>
</tr>
</tbody>
</table>

a Saunders and Smith
b Horne et al.
c This report
sh Shoulder

**Technical grade Balata, probably partly crystalline
Shimamichi et al.100 determined the normal coordinates for the out-of-plane C-H vibrations of benzene derivatives which proved to be sensitive to the type of substitution. Wibeler and Gonzalez101 studied the infrared spectra of polynuclear aromatic compounds in the C-H stretching and out-of-plane bending regions and found valuable spectra structure correlations. Young et al. found that the overtones and combination vibrations of the hydrogen out-of-plane vibrations of aromatics occurring between about 5 μ and 6 μ are characteristic for the type of substitution. Later, these bands were studied more fundamentally by Whitten.103

Lebess104 investigated the vibrational spectra of a number of mono-substituted benzene derivatives in the range between 700 cm-1 and 200 cm-1. Bogomolov, in a series of papers on the vibrational spectra of aromatic compounds, published calculated and experimental data on the characteristic vibrations of meta105 and para-disubstituted106 benzene derivatives. A paper by Gariou-Lagrange et al.107 was also concerned with the vibrational spectra (between 1600 cm-1 and 670 cm-1) of para-disubstituted benzene derivatives. Jakobsen and Brewer108 specifically discussed the spectra of para-substituted phenols in the range between 1600 cm-1 and 300 cm-1. Bogomolov109 discussed the characteristic vibrations of 1,2,3-substituted benzene derivatives. Jakobsen110 studied the assignments of bands in the CsBr region (650 cm-1 through 250 cm-1) for a large number of aromatic compounds.

Table 8 shows the vibrational modes of out-of-plane bending vibrations below 700 cm-1 for differently substituted benzene derivatives according to Shimamichi et al.100 For each type of substitution, the point group for the symmetry of the molecular skeleton is given. The numbers in the rings

29
TABLE 8

Calculated Frequencies of Out-of-Plane Ring Bending Vibrations

Below 700 cm\(^{-1}\) for Different Substituted Benzene Derivatives*.

<table>
<thead>
<tr>
<th>Frequency (cm(^{-1}))</th>
<th>Mode</th>
<th>Symmetry</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,560</td>
<td>mono</td>
<td>C(_{2v})</td>
<td>5,6</td>
</tr>
<tr>
<td>421</td>
<td>2,6</td>
<td>C(_{2v})</td>
<td>V(_b)</td>
</tr>
<tr>
<td>559</td>
<td>1,1,4</td>
<td>V(_b)</td>
<td>D(_{3h})</td>
</tr>
<tr>
<td>1,59</td>
<td>3,1,5</td>
<td>C(_{2v})</td>
<td>Far Infrared</td>
</tr>
<tr>
<td>1,11</td>
<td>1,1,6</td>
<td>C(_{2})</td>
<td></td>
</tr>
<tr>
<td>588</td>
<td>1,1,6</td>
<td>C(_{2})</td>
<td></td>
</tr>
</tbody>
</table>

*According to Shimanovich et al., the substituents are considered fixed (infinite mass).
TABLE 8 (Cont'd)

1,2,3,4 \text{ cm}^{-1} \quad \text{C}_{2v}

2,3,5,6 \text{ cm}^{-1} \quad \text{V}_h

1,3,4,5 \text{ cm}^{-1} \quad \text{C}_{2v}

2,3,4,5,6 \text{ cm}^{-1} \quad \text{C}_{2v}
are the frequencies of the respective vibrations calculated under the assumption of infinitely heavy substituents (solid circles). The exact figures for the calculated displacement vectors are given in the original publication.

Bands of benzene derivatives in the range below about 700 cm\(^{-1}\) are mainly due to bending vibrations of the aromatic system. The in-plane ring bending vibrations generally occur 100 to 200 cm\(^{-1}\) higher than the out-of-plane ring bending vibrations. At least in the case of mono- and disubstituted benzene derivatives the out-of-plane ring deformations are more intense than the in-plane vibrations. Also, the former ones are influenced by the type of substituent (see Table 10).\(^{110}\)

The out-of-plane bending vibrations of aromatic-bound hydrogens atoms usually occur between 700 cm\(^{-1}\) and 900 cm\(^{-1}\). Only in some cases hydrogen \(\gamma\)-vibrations may be found between about 650 cm\(^{-1}\) and 700 cm\(^{-1}\).

Substituents on the aromatic ring system may also show in-plane and out-of-plane bending vibrations, sometimes called \(\delta\) and \(\gamma\) vibrations, respectively. For substituents other than hydrogen, Jakobsen\(^{110}\) gives the ranges 220-410 cm\(^{-1}\) (in-plane) and 135-250 cm\(^{-1}\) (out-of-plane) for monosubstituted benzene derivatives; and 200-460 cm\(^{-1}\) (in-plane) and 140-370 cm\(^{-1}\) (out-of-plane) for para-disubstituted benzene derivatives.

Table 9 shows the variation of the frequency of infrared-active ring deformation vibrations with the type of substitution, according to Jakobsen.\(^{110}\)

The ranges for the out-of-plane ring bending vibrations of differently substituted compounds given by Jakobsen\(^{110}\) sometimes differ considerably from the values calculated by Shimomura et al.\(^{100}\) This is probably due to the sensitivity of the out-of-plane force constants to the polarity of the...
TABLE 9
Variation of Infrared-Active Ring Deformation Vibrations
With the Type of Substitution, According to Jakobsen

<table>
<thead>
<tr>
<th>Number of Substituents</th>
<th>Ring Position</th>
<th>Frequency Range (cm⁻¹)</th>
<th>Vibrational Mode (a)</th>
<th>Intensity (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mono-</td>
<td>1</td>
<td>605-625</td>
<td>δ</td>
<td>ms - s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>610-650</td>
<td>γ</td>
<td></td>
</tr>
<tr>
<td>Di-</td>
<td>1,2</td>
<td>695-655</td>
<td>δ</td>
<td>w - m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>614-670</td>
<td>γ</td>
<td>ms - s</td>
</tr>
<tr>
<td></td>
<td>1,3</td>
<td>505-560</td>
<td>δ</td>
<td>m - ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>415-490</td>
<td>γ</td>
<td>ms - s</td>
</tr>
<tr>
<td></td>
<td>1,4</td>
<td>615-650</td>
<td>δ</td>
<td>ν - m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>611-592</td>
<td>γ</td>
<td>ms - s</td>
</tr>
<tr>
<td>Tri-</td>
<td>1,2,3</td>
<td>428-476</td>
<td>γ</td>
<td>m - s</td>
</tr>
<tr>
<td></td>
<td>1,3,5</td>
<td>500-735</td>
<td>?</td>
<td>s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>650-740</td>
<td>?</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>1,2,3</td>
<td>535-570</td>
<td>γ</td>
<td>s</td>
</tr>
<tr>
<td>Tetra-</td>
<td>1,2,3,4</td>
<td>588-595</td>
<td>?</td>
<td>ms - s</td>
</tr>
<tr>
<td></td>
<td>1,2,3,5</td>
<td>565-580</td>
<td>γ</td>
<td>m - ms</td>
</tr>
<tr>
<td></td>
<td>1,2,4,5</td>
<td>420-470</td>
<td>?</td>
<td>ms - s</td>
</tr>
<tr>
<td>Penta-</td>
<td>1,2,3,4,5</td>
<td>538-590</td>
<td>?</td>
<td>s</td>
</tr>
<tr>
<td>Hexa-</td>
<td>1,2,3,4,5,6</td>
<td>385-415</td>
<td>?</td>
<td>m - s</td>
</tr>
</tbody>
</table>

(a) δ: in-plane ring deformation; γ: out-of-plane ring deformation

(b) w = weak, m = medium, s = strong
substituent. The effect of this sensitivity is shown in Table 10 where the positions for the out-of-plane ring bending vibrations for different types of substituents are given.

2. Polystyrene

Monomer unit: \(-\text{CH}-\text{CH}_2-\)

Conventional polystyrene is obtained by a radical process usually in a suspension or emulsion system. It is an amorphous and probably atactic polymer with no preferred configuration at the asymmetric carbon atom in the vinyl chain.

The vibrational spectrum of polystyrene was studied by a large number of authors. The first figures on the Raman spectrum of polystyrene were given by Siggia and Weller; a more complete Raman spectrum was published later by Palm and Torkington, for the first time, discussed the infrared spectrum of polystyrene. A more thorough study of the infrared and Raman spectrum of conventional amorphous polystyrene was published by Liang and Krisma. Their results on the far infrared absorptions, together with ours, are shown in Table 11. The approximate normal modes of the mono-substituted benzene ring in the far infrared, according to Liang and Krisma, are depicted in Table 12. Figure 15 shows the far infrared absorptions of conventional polystyrene sheets. Pfann et al. and Kammerer et al. published infrared spectroscopic methods for the determination of end groups in polystyrene.

Of the seven infrared absorptions of atactic polystyrene below 700 cm\(^{-1}\), four are in-plane and out-of-plane deformation vibrations of the aromatic
TABLE 10

Position of the Out-of-plane Ring Deformation Vibration for Monosubstituted Benzene Derivatives According to Jakobsen\[10\]

<table>
<thead>
<tr>
<th>Substituents</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{C} = \text{C}$, $-\text{C} \equiv \text{C}$, $-\text{C} \equiv \text{H}$</td>
<td>near 550 cm^{-1}</td>
</tr>
<tr>
<td>electron donors: $-\text{OH}$, $-\text{NH}_2$</td>
<td>near 500 cm^{-1}</td>
</tr>
<tr>
<td>electron acceptors: $-\text{COOH}$, $-\text{NO}_2$</td>
<td>below 450 cm^{-1}</td>
</tr>
<tr>
<td>Liang and Akimaii</td>
<td>Tadokoro et al.119</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>(cm⁻¹)</td>
<td>(cm⁻¹)</td>
</tr>
<tr>
<td>677</td>
<td></td>
</tr>
<tr>
<td>670</td>
<td>620</td>
</tr>
<tr>
<td>622</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>approx. 565sh*</td>
<td></td>
</tr>
<tr>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>103</td>
</tr>
<tr>
<td>325</td>
<td>320</td>
</tr>
</tbody>
</table>

*sh = shoulder
*This band, according to Takeda et al.120, is not present in an isotactic polystyrene prepared with All(C₂H₅)₃-TiCl₃.
TABLE 12
Approximate Normal Modes of Monosubstituted Benzene Ring in the Far Infrared
According to Liang and Krimm

\[
\begin{align*}
622 \text{ cm}^{-1} & \quad \delta \text{ ring (} \mathbf{E}_1 \text{)} \\
542 \text{ cm}^{-1} & \quad \gamma' \text{ ring (} \mathbf{B}_2 \text{)} \\
410 \text{ cm}^{-1} & \quad \gamma' \text{ ring (} \mathbf{A}_2 \text{)} \\
216 \text{ cm}^{-1} & \quad \gamma' \text{ ring (} \mathbf{B}_2 \text{)}
\end{align*}
\]
The weak bands at 436 cm\(^{-1}\) and 325 cm\(^{-1}\) were assigned to chain bending vibrations. The assignment of the band at about 160 cm\(^{-1}\) is dubious. This band was not found by Tadokoro et al\(^{117}\) and is not found in the spectrum of isotactic polystyrene. The assignment by Liang and Krim\(^{111}\) of the band at 216 cm\(^{-1}\) shown in Table 12 disagrees with the calculated value of 160 cm\(^{-1}\) for this vibration mode shown in Table 8. The assignments given in Table 12, therefore, may be subject to correction.

Isotactic polystyrenes was first described by Natta and Corradini.\(^{118}\) It is formed during the polymerization of styrene by stereospecific catalysts of the Niugler type and can be isolated from the crude polymer as an amorphous material. It is highly crystalline, has a molecular weight of 10\(^5\)-10\(^6\), and a first order transition temperature of about 219°C. The X-ray density of the crystallites is 1.126. The unit cell is similar to that of isotactic polypropylene. It contains two chain sequences parallel to the chain axis with three monomer units per repeat. The conformation of the chains is helical with three monomer units in a coil as in the helix of isotactic polypropylene. A crystallizable polystyrene, prepared by “ILCu” catalysts, is probably also isotactic.\(^{119,120}\) The infrared spectrum of isotactic polystyrene (see figure 19) was studied by a large number of authors.\(^{117,119-125}\) The spectra of deuterated isotactic and atactic polystyrene were also studied.\(^{117,123,125,127}\) The spectrum of isotactic, crystalline or amorphous, polystyrene is distinctly different from the spectrum of atactic polystyrene.

Tadokoro et al\(^{117,122}\) were the first who could show that bands in the crystalline material at 1362, 1394, 1297, and 1185 cm\(^{-1}\) (7.33, 7.61, 7.71, and 8.44 μ) belong to C-H\(_2\) and C-H wagging and twisting vibrations, and are likely connected with the helical conformation of the chains. This assignment is supported by the observation that similar bands at 1358, 1304, and
1167 cm$^{-1}$ are found in the spectrum of crystalline, isotactic polypropylene. The strongest evidence for this assignment is given by the fact that similar bands can be observed also in the spectra of isotactic and ring-substituted (methyl, deuterium) polystyrenes, but not in o-aminododecylated isotactic polystyrenes 117,122,129. Since in the case of quenched isotactic polystyrene these bands are weaker but still observable, it is concluded that amorphous isotactic polystyrene at least partially retains the helical structure. Also, these bands remain in the spectrum of dissolved (C$_2$) isotactic polystyrene. Hence, it is reasonable to assume that the helices essentially remain intact also in solution. (As to the discussion of three different types of bands sensitive to changes in configuration, conformation, and crystallinity, see also Takeda et al.,119,120 and Okashi and Krim.127)

A second group of bands, including five in the far infrared range, do not occur in the spectrum of atactic polystyrene. However, they can be observed only in crystalline isotactic polystyrene and disappear upon melting or dissolving of the material. They are very likely connected with far reaching intra and intermolecular interactions in the crystalline material. The maxima of the bands are at 986, 923, 901, 820, 587, 499, 465, and 420 cm$^{-1}$ (10.16, 10.83, 11.10, 16.13, 17.0k, 20.0k, 21.5, and 23.5 μm). Especially useful for the determination of crystallinity are the bands at 986 cm$^{-1}$ and 499 cm$^{-1}$.119,122

The doublet at 1085 cm$^{-1}$ and 1055 cm$^{-1}$ as well as the asymmetric band at 967 cm$^{-1}$ are vibrations of the phenyl group and form a third group of bands.119,120 They are sensitive against the short-range order within a chain, i.e., the alternating trans-gauche conformation in the isotactic

*This can probably not be generalized. Schadt55, for instance concluded from his experimental results that amorphous isotactic polypropylene has a non-helical conformation.

39

Approved for Public Release
sequences, and all-trans conformations in syndiotactic sequences. The band at about 565 cm\(^{-1}\) (the figures given for this band slightly differ in the different papers) is very likely characteristic for trans-gauche sequences. Takada et al.\(^{10}\) suggest the ratio of the absorbances \(A_{500}/A_{514}\) as a measure for isotactic sequences.

The observation of this group of bands characteristic for short range order in stereoregular polymers is of basic interest since one and threedimensional crystallinity are derived magnitudes, and consequently not in all instances a measure of the content of a polymer in atactic configurations.

3. Copolymers of Styrene.

"Zorlon 250" is a copolymer of about equal parts of styrene with methyl methacrylate. In its far infrared spectrum (Figure 20), the bands of both monomer units can be observed. However, the intense doublet of poly-styrene near 540 cm\(^{-1}\) is fused to a single band with its maximum at 550 cm\(^{-1}\).

4. Poly-\(\alpha\)-methylstyrene

Bentley and Welfarth\(^{19}\) in their publication on the analytical applications of far infrared spectra, studied a number of alkylsubstituted benzene derivatives. From their spectra of monoalkylated alkylbenzenes, it is evident that the strong band in the range of about 18-27.5 \(\mu\) (555-455 cm\(^{-1}\) is very sensitive to \(\alpha\)-branching of the substituent. Normal alkylbenzenes and iso-alkylbenzenes with the branching not in \(\alpha\)-position show this band around 500 cm\(^{-1}\). A branching in \(\beta\)-position shifts this band to about 550 cm\(^{-1}\) whereas a second branch in \(\alpha\)-position apparently has only a slight influence on the position of this band. The values for iso-butylbenzene, sec-butylbenzene, and tert-butylbenzene are 496 cm\(^{-1}\), 513 and 517 cm\(^{-1}\) (doublet) and 514 cm\(^{-1}\), respectively.
The same observation can be made with polystyrene and poly-\(\alpha\)-methylstyrene. The former absorbs at 536 cm\(^{-1}\) (Figure 18), the latter at 547 cm\(^{-1}\) (Figure 21). However, the band of polystyrene is, as in the case of iso-
butylbenzene, an unresolved doublet, whereas the band of poly-\(\alpha\)-methylstyrene is a single, almost symmetrical band as in the spectrum of tert-butylbenzene.

In this connection, it has to be mentioned that Jakobsen\(^{110}\) assigns a
band near 540 cm\(^{-1}\) in the spectra of alkylbenzenes to a C-C-C bending vibra-
tion of the substituent, whereas Liang and Krimm\(^{111}\) assigned this band in
polystyrene to an out-of-plane ring bending vibration (see Table 12).

5. Ring-Substituted Polystyrenes

Ring-substituted styrenes, as styrene itself, can be polymerized
with stereospecific catalysts. The resulting polymers are amorphous and
crystallize only with difficulty.\(^{129}\) However, they have an isotactic and
helical structure similar to that of isotactic polystyrene. This is evidenced
by the appearance of bands assigned to the helical vinyl chain, 1361, 1331, and
1290 cm\(^{-1}\) for poly-p-methylstyrene, and 1361, 1310, and 1190 cm\(^{-1}\) for poly-\(\alpha\)-
methylstyrene.\(^{122}\) Another support for the isotactic and helical structure of
these ring-substituted polystyrenes, prepared with Ziegler catalysts, is the
observation of Watts et al.\(^{126}\) that isotactic polystyrene and poly-p-methyl-
styrene are isomorphous. The far infrared spectra of these polymers are not
published as yet.

The atactic ring-substituted derivatives of polystyrene have had
industrial interest. The strongest band in the far infrared spectrum of
atactic poly-p-methylstyrene (Figure 22) is a doublet with maxima at about
953 cm\(^{-1}\) and 530 cm\(^{-1}\). The position of the former agrees well with the
frequency calculated for an out-of-plane bending vibration of 1,4-substituted

\(^{41}\)
bensene derivatives of the point group V_h by Shimomouchi et al.100 (Table 8). In the far infrared spectrum of poly-α-isopropylstyrene (Figure 23), the maximum of this band is shifted to about 550 cm$^{-1}$. A technical copolymer of vinyl toluene (mixture of isomers) and aroylonitrile was Cyrene 201 (Figure 24).

6. Polyindene

The olefinic double bond of indene is fairly reactive. Hence, indene can be polymerized with Lewis and other acids. Polyindenes of technical grade are resins with a rather low molecular weight; they are used as chemically resistant components in surface coatings. The monomer unit in polyindenes contains two different asymmetric carbon atoms. Furthermore, the addition may happen in head-to-tail or head-to-head and tail-to-tail fashion. Consequently, a number of different stereoregular polymers is theoretically possible. To date, nothing has been published about stereoregular polyindenes.

The far infrared spectrum of a technical polyindene (Figure 25) is characterized by a fairly strong band at about 520 cm$^{-1}$. This agrees rather well with the value (436 cm$^{-1}$) calculated by Shimomouchi et al.100 for an out-of-plane bending vibration of α-substituted bensene derivatives (see Table 8).

C. Halogenated Polyhydrocarbons (Chart III)

1. Chlorinated Polyhydrocarbons.

It has been generally observed that certain vibrations in a molecule are sensitive to the conformation of the vibrational group with respect to a neighboring group. Thus, the C-X stretching vibration in 1-substituted alkenes
is sensitive to the position of the substituent X with respect to the C-atom in φ-position. In vinyl polymers of the general formula \((-\text{CH} = \text{CH}_2)n\), the C-X stretching vibration \(X - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - X\)

is sensitive to the conformation of the C-C chain.

The carbon-halogen stretching vibrations in alkyl halides should receive consideration since they are easily detectable and rather sensitive to the conformation in the chain.\(^{130,137}\) According to Brown and Sheppard\(^{135}\), the 1,2-dihalogen ethanes have two spectroscopically distinguishable rotational isomers, namely, a trans-form where the two halogen atoms are in a trans-position, and a gauche form where the two halogens are at an angle of 60° to each other with respect to the C-C bond. Triethylene halides have four spectroscopically distinguishable rotational isomers, namely, those in trans-trans, trans-gauche, and two different gauche-gauche conformations. As the methylene chain between the chlorine atoms becomes large, the number of possible rotational isomers increases. However, these isomers finally become indistinguishable by infrared spectroscopic methods.

Shimanouchi and his coworkers\(^{136,137}\) proposed a rule concerning the spectral regions of various C-Cl stretching vibrations. According to this, the C-Cl stretching band of secondary chlorides with Cl trans to H is expected between 600 cm\(^{-1}\) and 640 cm\(^{-1}\); the C-Cl stretching band with Cl trans to C is expected between 670 cm\(^{-1}\) and 700 cm\(^{-1}\).

These considerations can be transferred to vinyl polymers, especially to the polyvinyl halides and similar compounds. However, every second carbon atom in polyvinyl halides is asymmetric, and the configuration of the substituents at these carbon atoms may be either d or l. The possible chain

Approved for Public Release
conformations in polyvinyl halides therefore depend on the configuration at the asymmetric carbon atom. This shall be discussed for polyvinyl chlorides of a different structure.

a. Polyvinyl Chloride. Conventional polyvinyl chloride is obtained by an emulsion or dispersion polymerization and with radical catalysts. Dehalogenation with metallic zinc yields a polymer with cyclopropane groups136,139; this is classical proof for the head-to-tail structure of polyvinyl chloride. Conventional polyvinyl chloride is not crystallizable. The asymmetric carbon atoms in its vinyl chain seem to have a somewhat prevailing d,l configuration according to a syndiotactic chain. However, this problem is not settled definitively.

The infrared spectrum of polyvinyl chloride was studied by a large number of authors.137,140-159 The most comprehensive discussion of its spectrum between 200 cm-1 and 100 cm-1 was given by Krimm3 and Liang.160 Strouberg et al.160 observed band shifts in the spectrum of thermally degraded polyvinyl chloride.

Polymerization at low temperatures seems to favor the formation of syndiotactic chains.118 There are also some catalyst systems with a certain degree of stereospecificity which preferably form syndiotactic and crystallizable polyvinyl chlorides. Kawaseki et al.156 used a mixture of aluminum triethyl and di-tert-butylperoxide at room temperature, and a mixture of boron triethyl and acetylacetone at -60\textdegree C. Takeda and Ilamure159 used a mixture of boron triethyl and acylperoxybutyronitrile as a catalyst. The radiation-initiated polymerization of vinyl chloride-toluene complexes at low temperatures also yields crystallizable polymers with a high degree of syndiotacticity.137,147,152
Samples with different density, and probably also with different crystallinity, were studied by Kawasaki et al. They found absorptions increasing with the density of a sample at 1128, 1333, 1254, 1226, and 961 cm\(^{-1}\) (7.00, 7.50, 7.98, 5.35, and 10.61 μ). The assignment of the four O-Cl stretching vibrations in the far infrared (690, 638, 617, and 503 cm\(^{-1}\)) for some time was a subject of controversy between different groups of spectroscopists. The first, and probably most complex absorption (680-690 cm\(^{-1}\)) is in the range for conformations with Cl trans to C; the three others are in the range for conformations with Cl trans to H. These conformations are possible for certain structures in both isotactic and syndiotactic sequences. Table 13 lists assignments for polyvinyl chloride. These assignments are based on experimental results of Kima et al. with highly syndiotactic and crystalline material which does not show the bands at 680-690 cm\(^{-1}\) and on data observed by Shimomouchi et al. with stereoregular 2,4,6-trichloro-pentanes. Table 14 shows the possible rotational isomers of meso and dl-2,4,6-trichloro-pentanes. Applying the rule of Shimomouchi et al., we can expect two bands in the range 600-640 cm\(^{-1}\) (Cl trans to H) for structure I, two bands between 670 cm\(^{-1}\) and 700 cm\(^{-1}\) (Cl trans to C) for structure II, and one band in each of the two ranges for structure III (in structure III one Cl is trans to H and one Cl trans to C). Table 15 shows the far infrared absorptions of the different 2,4,6-trichlo-
pentanes. Apparently the dl-form has the structure I and the meso form, the structure III.

It is noteworthy that these four bands are to some extent sensitive to deactivation of the chain. They are, therefore, not pure O-Cl stretching vibrations but couple with chain vibrations.
TABLE 13

Far Infrared Bands of Polyvinyl Chloride

<table>
<thead>
<tr>
<th>Wavenumber, cm⁻¹</th>
<th>Dichroic Behavior</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>690, 630 unresolved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>638</td>
<td>(\nu(C-Cl)_{o4}(\text{extended}))</td>
<td>(\nu(C-Cl)_{o4}(\text{extended})) in cryst. regions; extended chains</td>
</tr>
<tr>
<td>615</td>
<td>(\nu(C-Cl)_{t4})</td>
<td>(\nu(C-Cl)_{t4}) in amorphous regions; tactic chains</td>
</tr>
<tr>
<td>603</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\leq 50)</td>
<td>(\nu(\nu/\sigma)_{o4}(\text{shake}))</td>
<td>Combination vibration</td>
</tr>
<tr>
<td>467</td>
<td>(\nu(\nu/\sigma)_{o4}(\text{shake}))</td>
<td>Combination vibration</td>
</tr>
<tr>
<td>330</td>
<td>(\delta(C-Cl)_{o4}(\text{shake}))</td>
<td>Combination vibration</td>
</tr>
<tr>
<td>353</td>
<td></td>
<td>Not determined</td>
</tr>
<tr>
<td>235</td>
<td></td>
<td>Not determined</td>
</tr>
<tr>
<td>182</td>
<td></td>
<td>Not determined</td>
</tr>
<tr>
<td>160</td>
<td></td>
<td>Not determined</td>
</tr>
<tr>
<td>102</td>
<td></td>
<td>Not determined</td>
</tr>
</tbody>
</table>

*Selected from the results of several authors.

**Assignments according to Krimm. The subscripts refer to in-phase (i) and out-of-phase (o) motions, the first subscript referring to the value of the mode in a single chain, and the second subscript to the relationship between the motions of the two chains in the unit cell.

***Inversion of dichroism with drawing.258
<table>
<thead>
<tr>
<th>Structure 1*</th>
<th>Structure IIa</th>
<th>Structure III*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(dl-form)</td>
<td>(dl-form)</td>
<td>(meso-form)</td>
</tr>
</tbody>
</table>

*Model compound for syndiotactic polyvinyl chloride.

**Model compound for isotactic polyvinyl chloride.
<table>
<thead>
<tr>
<th>Compound</th>
<th>Phase</th>
<th>Wavenumber, cm⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>dl-2,4-dichloropentane</td>
<td>Gaseous</td>
<td>645, 622</td>
</tr>
<tr>
<td></td>
<td>Liquid</td>
<td>631, 610</td>
</tr>
<tr>
<td></td>
<td>Solid</td>
<td>623, 597</td>
</tr>
<tr>
<td>meso-2,4-dichloropentane</td>
<td>Liquid</td>
<td>683, 619</td>
</tr>
</tbody>
</table>
In fact, dl-2,4-dichloropentane is a model compound for syndiotactic polyvinyl chloride and meso 2,4-dichloropentane is a model compound for isotactic polyvinyl chloride. The two C-Cl bands observed in the spectrum of dl 2,4-dichloropentane correspond exactly to the bands at 638 cm\(^{-1}\) and 603 cm\(^{-1}\) found in crystalline, syndiotactic polyvinyl chloride. The only possible structure for a chain of this type with Cl trans to H is an extended syndiotactic one.

The band at 690 cm\(^{-1}\) belongs to a conformation Cl trans to C. The dl-2,4-dichloropentane showed no band near 690 cm\(^{-1}\) but the meso form did. Consequently, it is very likely that the band near 690 cm\(^{-1}\) in conventional polyvinyl chloride belongs to isotactic sequences, probably in a helical conformation. The possible conformations in conventional polyvinyl chloride are shown in Table 16.

Figure 26 shows the absorptions of a sheet of conventional polyvinyl chloride. The bands at 615 cm\(^{-1}\) and 603 cm\(^{-1}\) cannot be resolved without the application of polarized infrared.

Vinylchloride-vinylacetate copolymers are widely used in coatings and cements. The content in vinylacetate units makes the polymers more soluble in the usual solvents for lacquers. The far infrared spectrum of a copolymer with about 15% vinylacetate (Figure 27) is very similar to that of a pure polyvinyl chloride. This is mainly due to the fact that the strongest band of polyvinyl acetate near 605 cm\(^{-1}\) is masked by the much stronger band of polyvinyl chloride near 615 cm\(^{-1}\). Copolymers of this type, however, can readily be identified by their infrared spectrum in the rocksalt range.

b. Polyvinylidene Chloride. Vinylidene chloride polymerizes with radical catalysts to yield a polymer which is not readily soluble in most of...
TABLE 26
Possible Formations of Polymer Chains in Conventional Polyvinylchloride*

(a) extended syndiotactic structure (all trans; likely)
(b) folded syndiotactic structure (-trans-trans-gauche-gauche--; unlikely)
(c) threefold isotactic helix (-gauche-trans-gauche--; likely)

the conventional solvents. For industrial use, it is therefore copolymerized with about 15% vinyl chloride. These copolymers, known as "Saran" (Figure 28) or "Teflon," are readily soluble in a number of solvents. The anionic polymerization and copolymerization of vinylidene chloride was described by Konishi \(^{161}\) (more literature is given in this publication).

The identity period of the chain axis, according to X-ray examination, is rather short, namely 4.7 Å. This is more than one monomer unit but less than two for a planar zigzag. Two possible structures were suggested for this repeating period, both containing two monomer units, one by Fuller \(^{162}\), the other by Reinhardt \(^{163}\). In both structures the carbon skeleton is folded.

The infrared spectra of polyvinylidene chloride and, preferably, vinylidene chloride-vinyl chloride copolymers were studied by a number of authors \(^{140,146-167}\). Table 17 shows the far infrared absorptions of a vinylidene chloride-vinyl chloride copolymer with a low content of vinyl chloride. The only absorptions observable, and belonging to the vinyl chloride units or to the copolymer, are the bands at 1206 cm\(^{-1}\) and 868 cm\(^{-1}\) (8.29 μ and 11.52 μ). A weak band found by Krimm and Liang \(^{164}\) near 307 cm\(^{-1}\) was not observed in our spectrum.

The assignment of the bands at 754, 967, 603, and 530 cm\(^{-1}\) to CCl\(_2\) stretching modes, supported by deuteration studies, and their dichroic behavior is essential to the choice of the correct structure. Due to the two monomer units in the repeating unit and the phase relations between them, the fundamental vibrations of the CCl\(_2\) group are doubled. As Krimm and Liang pointed out, two rather strong perpendicular bands, a weaker parallel band, and an almost inactive band should be characteristic for the Reinhardt \(^{163}\).

As in the case of polyvinyl chloride, the CCl\(_2\) stretching vibrations couple quite considerably with skeleton vibrations.

Approved for Public Release
<table>
<thead>
<tr>
<th>Krism and Liang<sup>164</sup> (Dow Saran)</th>
<th>This Report</th>
<th>Dichroic Behavior</th>
<th>Assignment<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavenumber, cm<sup>-1</sup></td>
<td>Wavenumber, cm<sup>-1</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>754</td>
<td>749</td>
<td></td>
<td>(\gamma_2(\text{CCl}_2)_2) ((\Lambda'))</td>
</tr>
<tr>
<td>687</td>
<td>664</td>
<td></td>
<td>(\gamma_4(\text{CCl}_2)_2) ((\Lambda'))</td>
</tr>
<tr>
<td>603</td>
<td>598</td>
<td></td>
<td>(\gamma_2(\text{CCl}_2)_0) ((\Lambda'))</td>
</tr>
<tr>
<td>566</td>
<td>563-595</td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>530</td>
<td>528</td>
<td></td>
<td>(\gamma_2(\text{CCl}_2)_2) ((\Lambda'))</td>
</tr>
<tr>
<td>434</td>
<td>414</td>
<td></td>
<td>(\gamma_2(\text{CCl}_2)_2) ((\Lambda')) ?; skeletal ?</td>
</tr>
<tr>
<td>430</td>
<td>430</td>
<td></td>
<td>(\gamma_2(\text{CCl}_2)_2) ((\Lambda')) ?; skeletal ?</td>
</tr>
<tr>
<td>359</td>
<td>354</td>
<td></td>
<td>(\gamma_2(\text{CCl}_2)_1) ((\Lambda''))</td>
</tr>
<tr>
<td>307</td>
<td></td>
<td></td>
<td>(\gamma_2(\text{CCl}_2)_0) ((\Lambda'))</td>
</tr>
<tr>
<td>291</td>
<td>approx. 280</td>
<td></td>
<td>(\gamma_2(\text{CCl}_2)_2) ((\Lambda'))</td>
</tr>
<tr>
<td>215</td>
<td></td>
<td></td>
<td>(\delta(\text{CCl}_2)_4) ((\Lambda'))</td>
</tr>
<tr>
<td>185</td>
<td></td>
<td></td>
<td>skeletal ?</td>
</tr>
<tr>
<td>113</td>
<td></td>
<td></td>
<td>skeletal ?</td>
</tr>
<tr>
<td>102</td>
<td></td>
<td></td>
<td>skeletal ?</td>
</tr>
</tbody>
</table>

^aAccording to Krism and Liang¹⁶⁴
structure. On the other hand, the Fuller162 structure implies four perpendicular bands, two of them stronger than the other two. The experimental results strongly support the Fuller162 structure.

Polyvinylidene chloride is crystallizable. According to Marita et al166, the bands at 854, 753, 595, 600, 565, 527, and 152 cm-1 are much weaker in melt samples. Actually, the long wavelength vibrations almost fuse together into a very broad and poorly structured band. This indicates a basic change in the structure of the polymer during melting.

Quenched samples recrystallize slowly at room temperature. This can be followed by changes in the far infrared spectrum. Stretching speeds up the rate of recrystallization.

c. Other Chlorinated Polyhydrocarbons. Enjay Chlorobutyl is a low-chlorinated butyl rubber. The bands in its far infrared spectrum (Figure 29) are weak; the one near 693 cm-1 may be a C=C stretching vibration. The spectrum as a whole differs little from the spectrum of butyl rubber.

Chlorinated and chlorosulfonated polyethylenes obtained considerable industrial interest as components in surface coating and synthetic rubber. Camerino and Kahl168 recently published a rather thorough study on the properties of chlorinated and chlorosulfonated high- and low-density polyethylenes and ethylene-propylene copolymers.

The far infrared spectrum of a chlorinated high-pressure (low-density) polyethylene (Figure 30) shows rather strong bands near 660 cm-1 and 610 cm-1. Both must be C=C stretching vibrations for groups with different conformation. The latter band belongs to conformations with Cl trans to N, the former probably to conformations Cl trans to C.

51

Approved for Public Release
The infrared spectrum of chlorosulfonated polyethylene was described by Snook et al.1,69 Its far infrared spectrum (Figure 31) has the same C-Cl bands as chlorinated polyethylene. Additional bands near 590, 565, and 533 cm\(^{-1}\) can possibly be connected with the SO\(_2\)Cl groups. This spectral behavior is consistent with the structure. Chlorosulfonated polyethylene contains 26% - 29 percent chlorine and only 1.3 - 1.7 percent sulfur. Consequently, the chlorine in its major part is bound directly to the chain as in chlorinated polyethylene.

The compound, 1,4-polyisoprene, adds hydrogen chloride to its olefinic double bonds; according to Markovnikov’s rule, the chlorine is added to the carbon atom with the smaller number of hydrogen atoms:

\[
\begin{align*}
\text{Cl} & \quad \text{CH}_2=\text{C-(CH}_2\text{CH}_2\text{-}) \\
& \quad \text{CH}_3
\end{align*}
\]

Checkland and Davison170 described the infrared spectrum of hydrochlorinated Hevea rubber. Its far infrared spectrum (Figure 32) shows some similarity to the spectrum of conventional polyvinyl chloride (Figure 26). Bands at 643 cm\(^{-1}\) and 640 cm\(^{-1}\) were assigned to C-Cl stretching vibrations of groups where Cl is trans or gauche to the CH\(_2\) group.170

The chlorination of Hevea rubber not only leads to an addition of chlorine to the olefinic double bond but also to substitution reactions. The infrared spectrum of chlorinated rubber was studied by a number of authors.71-77 Its far infrared spectrum (Figure 23) differs significantly from that of hydrochlorinated rubber or polyvinyl chloride. Due to the irregular structure of chlorinated rubber and the many possible conformations of the chain, comments on the far infrared spectrum were not attempted.
The infrared spectrum of after-chlorinated polyvinyl chloride was studied by Fuchs and Louis. No figures were available for the far infrared region.

2. Fluorinated Polyhydrocarbons, Polyfluorocarbons, and Poly(chlorofluorocarbons)

a. Polyvinyl Fluoride. Vinyl fluoride polymerizes with radical catalysts at high pressures to form a polymer with a melting range of 170-190°C and a density of 1.30 g cm⁻³. A polymerization process was described by Koll et al. Polyvinyl fluoride ("Teflar") is used for chemically resistant surface coatings and films.

The strong bands in its far infrared spectrum (Figure 34) are mainly due to deformation vibrations involving the C-H group. Since they are weaker than the extremely strong C-F stretching vibrations in the range of 1160 cm⁻¹, the conventional films with thicknesses around 50 μ can easily be studied in the far infrared but not in the rocksalt range.

b. Polyvinylidene Fluoride. Vinylidene fluoride can be polymerized with radical catalysts. (See McBea et al.) The polymers melt around 170°C and have a density of 1.76 g cm⁻³. The technical product is called "Kynar."

The far infrared absorptions of polyvinylidene fluoride (Figure 35) mainly stem from deformation vibrations of the C=CF₂ group. As already mentioned for polyvinyl fluoride, the stretching vibrations in the rocksalt range are extremely strong. Hence the far infrared range is more suitable for the identification of films with the usual thicknesses around 50 μ.

c. Polytetrafluoroethylene. Polytetrafluoroethylene is a highly crystalline material with a density of 2.2 g/cc and a transition temperature
of 327°C. However, the material does not really melt at this temperature but only become amorphous and plastic.

According to X-ray studies of Bunn and Howells, a polymer chain in crystalline polytetrafluoroethylene consists of a helical arrangement of 13 CF₂ groups in the identity period. There is a phase transition at 19°C which seems to be accompanied by a change in the identity period, there now being 15 CF₂ groups in the repeat.

The infrared spectrum of the polymer was investigated by a number of authors. The far infrared bands and their assignments given by Krimm, together with those found through this study, are shown in Table 18. It is interesting to note the parallelism between the infrared spectra of polyethylene (Figure 3) with the structure (CH₂)n, and that of polytetrafluoroethylene with the structure (CF₂)n (Figure 36). However, the CF₂-bending vibration has a lower frequency than the CF₂-wagging frequency. Generally, the intramolecular forces in the (CF₂)n chain are much stronger than in the polyethylene chain. This is also expressed by the fact that a minor change in the structure, namely the rearrangement of the thirteen-fold helix to a fifteen-fold helix, can be noticed by a shift of the CF₂-wagging vibration from 638 cm⁻¹ to 625 cm⁻¹. In cases of weaker intra- or intermolecular forces, enantiomorphous modifications may have the same infrared spectrum.

Infrared methods for the determination of crystallinity in polytetrafluoroethylene were described by Pokrovsky and Sotova, and by Miller and Willis. A method for the determination of end groups in polytetrafluoroethylene was described by Bro and Sperati.
<table>
<thead>
<tr>
<th>Wavenumber, cm(^{-1})</th>
<th>This Report</th>
<th>Dielectric Behavior</th>
<th>Assignment(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>740</td>
<td>730</td>
<td></td>
<td></td>
</tr>
<tr>
<td>720</td>
<td>717</td>
<td></td>
<td></td>
</tr>
<tr>
<td>703</td>
<td>700 (sh)**</td>
<td>Not determined</td>
<td>Not determined</td>
</tr>
<tr>
<td>-</td>
<td>670 (sh)**</td>
<td>Not determined</td>
<td>Not determined</td>
</tr>
<tr>
<td>638</td>
<td>638</td>
<td></td>
<td></td>
</tr>
<tr>
<td>625</td>
<td>625</td>
<td></td>
<td></td>
</tr>
<tr>
<td>554</td>
<td>554</td>
<td>(\perp)</td>
<td>(s(CF_2)) (E(_2))</td>
</tr>
<tr>
<td>516</td>
<td>515</td>
<td></td>
<td></td>
</tr>
<tr>
<td>394</td>
<td>380-385</td>
<td></td>
<td></td>
</tr>
<tr>
<td>321</td>
<td>*</td>
<td>Not determined</td>
<td>(v_1(CF_2)) (E(_1))</td>
</tr>
<tr>
<td>277</td>
<td>*</td>
<td>Not determined</td>
<td>(v_2(CF_2)) (E(_1))</td>
</tr>
<tr>
<td>203</td>
<td>-</td>
<td>Not determined</td>
<td>(v_2(CF_2)) (E(_1))</td>
</tr>
<tr>
<td>183</td>
<td>-</td>
<td>Not determined</td>
<td>Not determined</td>
</tr>
<tr>
<td>124</td>
<td>-</td>
<td>Not determined</td>
<td>Not determined</td>
</tr>
<tr>
<td>102</td>
<td>-</td>
<td>Not determined</td>
<td>Not determined</td>
</tr>
</tbody>
</table>

*Not observed due to strong water bands

**sh = shoulder
d. Polychlorotrifluoroethylene. Polychlorotrifluoroethylene is highly crystalline and differs from polytetrafluoroethylene by melting at about 300°C without decomposition. Its structure is not yet fully understood. It is assumed that it is stereoregular and has a helical structure.

The infrared spectrum of the polymer was studied by Liang and Krum. They, together with us (Figure 37), are shown in Table 19. Iwasaki et al. studied the decomposition of polychlorotrifluoroethylene by an infrared spectroscopic method. Hoffman and Weeks and Matsumoto determined the crystallinity of the polymer by an infrared method.

Iwasaki et al. studied the infrared spectra of tetrabromotrifluoroethylene copolymers. They found characteristic bands for different arrangements between the tetrabromotrifluoroethylene (4) and trifluorochlorostyrene (8) monomer units: ABB 937 cm⁻¹, ABB 967 cm⁻¹, ABB 971 cm⁻¹.

A copolymer of chlorotrifluoroethylene and vinylidene fluoride (KEL-F 827) has a far infrared spectrum (Figure 37) very similar to that of pure polytetrafluoroethylene (Figure 38). Only the shift of the maximum at 500 cm⁻¹ to 510 cm⁻¹ reveals the presence of the vinylidene fluoride unit.

D. Alkyl and Other Resinous Esters (Chart IV)

If we consider the ester group as a plane, three-pointed star, then this "molecule" of four atoms is able to perform the following vibrations:
<table>
<thead>
<tr>
<th>Wave Number, cm(^{-1})</th>
<th>Liang and Kriwolov(^{180})</th>
<th>This Report</th>
<th>Dichroic Behavior</th>
<th>Assignment(^{180})</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>665</td>
<td>Not determined</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>655</td>
<td>666</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>580</td>
<td>589</td>
<td>1</td>
<td>CF(_2) wagging (A)</td>
<td>-</td>
</tr>
<tr>
<td>(535)</td>
<td>530 (sh)(^{#})</td>
<td>?</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>406</td>
<td>501</td>
<td>?</td>
<td>CF(_2) bending (B(_1))</td>
<td>-</td>
</tr>
<tr>
<td>490</td>
<td>?</td>
<td>?</td>
<td>CF(_2) rocking (A)</td>
<td>-</td>
</tr>
<tr>
<td>438</td>
<td>436</td>
<td>1</td>
<td>OCCF wagging (A)</td>
<td>-</td>
</tr>
<tr>
<td>390</td>
<td>385</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>345</td>
<td>-</td>
<td>?</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>335</td>
<td>330-35</td>
<td>unpolar</td>
<td>OCCF bending (B(_1))</td>
<td>-</td>
</tr>
<tr>
<td>297</td>
<td>-</td>
<td>Not determined</td>
<td>CF(_2) wagging (?) (B(_2))</td>
<td>-</td>
</tr>
<tr>
<td>235</td>
<td>-</td>
<td>Not determined</td>
<td>CF(_2) rocking (B(_1))</td>
<td>-</td>
</tr>
<tr>
<td>185</td>
<td>-</td>
<td>Not determined</td>
<td>OCCF rocking (B(_1))</td>
<td>-</td>
</tr>
<tr>
<td>102</td>
<td>-</td>
<td>Not determined</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

\(^{#}\) sh = shoulder
The first one is asymmetric with respect to the C=O axis and a degenerate vibration. During this vibration all atoms of the group perform nonlinear movements in the plane of the ester group. In a first approximation, the single-bonded C and O describe circles. The second one is a bending vibration symmetric to the C=O axis, the third one is an out-of-plane deformation vibration of the group. The above assignments are tentative.

The frequency of these vibrations strongly depends on the type of substituent since there is a strong mechanical coupling between the deformation vibrations of the ester group and deformation vibrations of the substituents. The wavenumbers mentioned above, therefore, can only be used as a guide to frequency position of the ester grouping. The first of these vibrations is especially sensitive to mechanical coupling and inductive effects and may be found in the region between 650 cm\(^{-1}\) and 500 cm\(^{-1}\). Also, the intensity has been found to vary strongly. The assignment follows the one suggested by Eaton and Bentley\(^{192}\) for similar vibrations of ketones.

More detailed information on the far infrared absorptions of esters is available from a recent publication of Lucier and Bentley.\(^{193}\)

2. Oil-Free Alkyd Resins

Oil-free alkyd resins, or "glyptals," are polyesters of phthalic acid with tri or polyvalent alcohols like glycerol or pentaerythritol. The spectral pattern in the far infrared is governed by the absorptions of the
ester groups and the aromatic ring system. Different kinds of alcohols have
only a slight influence on the far infrared spectrum. All types of phthalic
acid esters possess a sharp band at 650 cm\(^{-1}\) (Figure 39). This may be
assigned to the degenerate bending vibration of the ester group since the
highest in-plane bending vibration of the ortho-substituted benzene ring,
according to Jacobsen,\(^{10}\) absorbs at lower frequencies between 695 cm\(^{-1}\) and
555 cm\(^{-1}\). However, this assignment is not very suitable since a bending
vibration of the ester group should exhibit at least some sensitivity to the
type of the substituent. Also, characteristic for the estergroup but less
obvious are bands around 645 cm\(^{-1}\) and 350 cm\(^{-1}\). The band near 562 cm\(^{-1}\) can
possibly be assigned to the in-plane bending vibration of the aromatic ring.

Spurr et al.\(^{12}\) studied the infrared spectrum of diallyl phthalate
polymers. The far infrared spectrum of a diallyl phthalate pre-polymer
(Figure 40) is rather similar to that of oil-free alkyd resins.

3. Oil-Modified Alkyd Resins

Oil-modified alkyls are widely used for lacquers and paints. Those
containing a high percentage of highly unsaturated vegetable oils are
air-drying. Those containing smaller percentages of oil ("short-oil"
alkyls), or mainly saturated fatty acids, have to be cured at higher
temperatures.

Isolated and conjugated olefinic double bonds in trans-configuration
absorb between 980 cm\(^{-1}\) and 950 cm\(^{-1}\). Cis-olefinic groups prevailing in
natural oils have a broad absorption around 730 cm\(^{-1}\) which is merged with
the methylene rocking vibration at about 730 cm\(^{-1}\) of the long aliphatie
chains. There is no infrared spectroscopic method for the direct determina-
tion of the cis-content in oils because this band is too diffuse and
inseparable from the methylene-rocking vibration. Unfortunately, there seems to be no useful absorption of cis-vinylene groups in the far infrared either.

Oil-modified alkyd resins in their far infrared spectra (Figures 11-14) differ from the oil-free alkyds by a rather significant band at about 480 cm\(^{-1}\). This band seems to belong to a vibration of the ester group in long-chain esters.

The far infrared absorptions of vegetable oils are generally weak. If the oils for practical purposes are modified with strongly absorbing resins like the epoxy resins, then the spectrum of this modified oil is very similar to that of the pure modifying resin. The spectrum of an epoxy-modified dehydrated castor oil (Figure 15) is very similar to that of a pure epoxy resin (Figure 53).

Oil-modified alkyd resins based on isophthalic acid differ only slightly in their far infrared spectrum (Figure 16) from the alkyd resins based on phthalic acid. There is normally a pair of bands or a broad band somewhere near 630 cm\(^{-1}\) where o-phthalates have a single and sharp band. The maximum of the broad band of o-phthalates near 350 cm\(^{-1}\) shifts to about 310 cm\(^{-1}\) in the spectrum of isophthalates.

1. Terephthalic Acid Polysters.

a. Polyethylene terephthalate. Polyethylene terephthalate was first developed by the ICI on a technical scale and is now widely used as a very tough and resistant material for films (Nylon, Estaplan) and fibers (Terylene). The monomer unit is: \(-\text{O-CH}_2-\text{CH}_2-\text{O-} \left(\begin{array}{c} \text{O} \\ \text{O} \end{array} \right)\). The polymer can be crystallized to a rather high percentage of crystallinity. The
crystal structure was studied by X-ray diffraction by a number of authors.195-198

According to Daubeny et al.195 the unit cell contains one monomer unit, is triclinic, and has the following dimensions: \(a = 4.56 \text{ Å}, \ b = 5.91 \text{ Å}, \ c = 10.75 \text{ Å}, \ \alpha = 98.1/2^\circ, \ \beta = 119^\circ, \ \gamma = 112^\circ\). This gives the density of the crystals as
\[1.155 \text{ g cm}^{-3}. \]

The molecules in the unit cell are nearly co-planar. The unit cell has a center of symmetry. A slight deviation from planarity results from the COO groups being about 12° out of the plane of the benzene rings. It is also thought that the CH\(_2\)–CH\(_2\) bond is rotated about 20° around the C–OH bond from the planar configuration.

The infrared spectrum of the polymer is very complex due to the large number of atoms in the monomer unit. Consequently definite assignments of the bands to certain vibrational modes have not been obtained despite the large number of investigators.199-210 A comprehensive study of the infrared spectrum of oriented films of polyethylene terephthalate was published by Liang and Krim.206 The far infrared bands and their assignment, given in the latter paper, are reproduced in Table 20, together with our results. Figure 47 shows a commercial film of polyethylene terephthalate.

A number of authors were especially interested in the effects of crystallinity on the infrared spectrum of polyethylene terephthalate.199,200, 205,206,210 The intensity of a relatively large number of bands is a function of the crystallinity of the specimen. Table 21 shows bands whose frequency and intensity depend on the crystallinity of a sample (according to Tackendorf et al.205). There is a pronounced increase in absorptions at 1370 cm\(^{-1}\) and 972 cm\(^{-1}\) upon crystallization of the polymer.199,200 An "amorphous" band according to Miller and Willis200 which is not sensitive to the orientation of the sample is the medium absorption near 898 cm\(^{-1}\).
<table>
<thead>
<tr>
<th>Wavenumber, cm⁻¹</th>
<th>This Report</th>
<th>Dichroic Behavior</th>
<th>Assignment(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>680</td>
<td>678</td>
<td>⊥</td>
<td>(\nu_4(a_2)) ?</td>
</tr>
<tr>
<td>633</td>
<td>630</td>
<td>⊥</td>
<td>combination (\nu'(183+3(\nu-\nu)))</td>
</tr>
<tr>
<td>613</td>
<td>610 br</td>
<td>⊥</td>
<td>(\nu_3(b_1)) ?</td>
</tr>
<tr>
<td>575</td>
<td>-</td>
<td>⊥</td>
<td>combination (\nu'(109+318))</td>
</tr>
<tr>
<td>525</td>
<td>520 br</td>
<td>⊥</td>
<td>(\nu_4(a_1))</td>
</tr>
<tr>
<td>502</td>
<td>504</td>
<td>⊥</td>
<td>(\nu_4(0-0))</td>
</tr>
<tr>
<td>437</td>
<td>-</td>
<td>-</td>
<td>(\delta(\nu_2))</td>
</tr>
<tr>
<td>430</td>
<td>431</td>
<td>⊥</td>
<td>(\nu_5(b_3))</td>
</tr>
<tr>
<td>383</td>
<td>377</td>
<td>⊥</td>
<td>(\delta(\nu_3))</td>
</tr>
<tr>
<td>355</td>
<td>350</td>
<td>⊥</td>
<td>(\nu_6(0-0))</td>
</tr>
<tr>
<td>250</td>
<td>-</td>
<td>Not determined</td>
<td>(\nu'(189(2v_1)))</td>
</tr>
<tr>
<td>145</td>
<td>-</td>
<td>Not determined</td>
<td>(\nu'(189(2v_1)))</td>
</tr>
<tr>
<td>approx. 95</td>
<td></td>
<td></td>
<td>(\nu'(189(2v_1)))</td>
</tr>
</tbody>
</table>

br = broad

(a) For the form of the normal modes, see Liang and Klier \(^{206,111}\) and Pitzer and Scott. \(^{211}\)
Table 2

Infrared Bands of Polyethylene Terephthalate Sensitive to Crystallization According to Tadokoro et al.\(^2\)\(^9\)

<table>
<thead>
<tr>
<th>Crystalline Wave-number, cm(^{-1})</th>
<th>Amorphous</th>
<th>Melted</th>
<th>Relative Intensity(a)</th>
<th>Changes with Crystallization</th>
</tr>
</thead>
<tbody>
<tr>
<td>3430</td>
<td>3432</td>
<td>3435</td>
<td>w</td>
<td>increase in intensity</td>
</tr>
<tr>
<td>3100</td>
<td>3100</td>
<td></td>
<td>vw</td>
<td>disappears in melted state</td>
</tr>
<tr>
<td>3011</td>
<td>-</td>
<td>-</td>
<td>vw</td>
<td>appears in crystalline form</td>
</tr>
<tr>
<td>2973</td>
<td>-</td>
<td>-</td>
<td>s</td>
<td>appears in crystalline form</td>
</tr>
<tr>
<td>2155</td>
<td>2155</td>
<td>2155</td>
<td>m</td>
<td>decrease in intensity</td>
</tr>
<tr>
<td>1378</td>
<td></td>
<td>-</td>
<td>vwvw</td>
<td>appears in crystalline form</td>
</tr>
<tr>
<td>1371</td>
<td>1379</td>
<td>1368</td>
<td>w</td>
<td>decrease in intensity</td>
</tr>
<tr>
<td>1304</td>
<td>1339</td>
<td>1337</td>
<td>s</td>
<td>increase in intensity</td>
</tr>
<tr>
<td>1119</td>
<td>1117</td>
<td>1115(sh)</td>
<td>s</td>
<td>increase in intensity</td>
</tr>
<tr>
<td>1102</td>
<td>1100</td>
<td>1093</td>
<td>s</td>
<td>decrease in intensity</td>
</tr>
<tr>
<td>1040</td>
<td>1040</td>
<td>1035(sh)</td>
<td>w</td>
<td>distinguished in quenched samples, but not in the melt</td>
</tr>
<tr>
<td>970</td>
<td>970</td>
<td>962</td>
<td>m</td>
<td>increase in intensity</td>
</tr>
<tr>
<td>845</td>
<td>840</td>
<td>-</td>
<td>mw</td>
<td>increase in intensity, disappears in molten state</td>
</tr>
</tbody>
</table>

(a) w = weak, m = medium, s = strong, v = very, sh = shoulder

65

Approved for Public Release
There is a rotational isomerism in the -O-C\textsubscript{2}H\textsubscript{4}-O- portion of the chain. Bands at 1170, 1342, 975, and 850 cm-1 can be attributed to the trans-conformation of the CH\textsubscript{2} groups in the crystalline regions, while bands at 1145, 1370, 1045, and 900 cm-1 are to be associated with the gauche conformation of the CH\textsubscript{2} groups. The latter is presumably to be found in the amorphous regions. Interestingly, most of the bands being sensitive to crystallinity belong to vibrational modes of the ethylene glycol units in the polymer.

The assignments were made with the assumption that the C-C\textsubscript{2}H\textsubscript{2}-O part of the chain can be classified in terms of the \textnu\textsubscript{1} symmetry of para-disubstituted benzene derivatives. However, a number of absorptions forbidden in the infrared but Raman active (exclusion rule) actually can be observed in the infrared spectrum. This is due to the loss of the center of symmetry by the rotation of chain members out of the plane of the benzene rings. For the assignment of the normal modes of the -O-C\textsubscript{2}H\textsubscript{4}-O- unit, a symmetry C\textsubscript{2v} for the trans 1,2-substituted ethane was assumed. This structure is implied by the molecular structure of crystalline polyethylene terephthalate according to Daubeny et al.195

In a recent study Schmidt210 found that the trans form of the ethylene glycol linkage is the extended form, and the gauche form is the relaxed form. The amorphous regions of polyethylene terephthalate have been found to contain both of these isomers.

b. Polyester Resins Based Upon Terephthalic Acid. The principal use of terephthalic acid polyesters other than those with ethylene glycol are for wire enamels. Usually a mixture of glycerol and ethylene glycol is used for the esterification of the acid. The resulting polyester contains a
considerable number of free hydroxyl groups which crosslink at higher temperatures. The resin is poorly soluble in the usual solvents but readily soluble in a technical mixture of phenols, cresols, and xylene.

The infrared and gas-chromatographic analysis of lacquers of this type was described by Hessel.212 The far infrared spectrum (Figure 46) is distinctly different from that of polystyrene terephthalate. This is mainly due to the high crystallinity of the latter. Surface coating resins based on terephthalic acid are amorphous.

5. Styrenated Alkyd Resins and Vegetable Oils

Oil-modified alkyd resins can be further modified with styrene.

The reaction takes place at the double bonds of the unsaturated fatty acids of the oil-component and polystyrene chains of different length are formed. Surface coatings with this type of resin show higher resistance against aging and chemicals.

The far infrared spectrum of a styrenated alkyd resin (Figure 47) shows the strong band of polystyrene around 550 cm\(^{-1}\) superimposed by the strong and broad band of alkyls near 550 cm\(^{-1}\).

Vinyl toluene can be used instead of styrene as a modifying agent, and unsaturated vegetable oils in place of alkyd resins. In the far infrared spectrum of a vinyl-toluene modified vegetable oil (Figure 50) a band near 1410 cm\(^{-1}\) is characteristic for the polymeric vinyl toluene component.

6. Unsaturated Polyester Resins

The conventional unsaturated polyester resins are usually based upon a polyester from maleic acid, phthalic acid, adipic acid and a glycol. However, there are many variations in the type of unsaturated and saturated acids, and also in the kind of dicys, so meet certain industrial specifica-
tions. These resins are dissolved in styrene or in another suitable monomer like diallyl phthalate or triallyl cyanurate. The depolymerization is usually initiated by the addition of a radical catalyst.

For the identification of an uncured sample, the resin and the monomer are separated by evaporation or by suitable solvents. The far infrared spectra of styrene-free samples (Figures 51 and 52) show the characteristic band of phthalic acid esters at 690 cm\(^{-1}\), together with bands of the other components at 670, 650, and 560 cm\(^{-1}\). However, this picture may change considerably from one type of unsaturated polyester to another.

7. Polycarbonates

The most interesting polyester of carbonic acid is based on bisphenol A, and has the following monomer unit:

![Monomer unit of polycarbonate]

It has found considerable use as a thermoplastic material for heat-resistant household items and films. A structure for the molecule in the crystalline regions of the polymer has been proposed by Friedrich\(^{213}\) on the basis of preliminary X-ray diffraction studies. However, Krimm stated in a recent publication\(^{214}\) that this proposed structure is in significant disagreement with X-ray and infrared data.

The far infrared spectrum of a film of polycarbonate on base of Bisphenol A (Figure 53) shows only one strong band at 355 cm\(^{-1}\), which is also present in the spectra of epoxy resins based on Bisphenol A. This band must be assigned to an out-of-plane bending vibration of the para-substituted benzene ring; its wavenumber is in very good agreement with the value

68
calculated by Shinaoouchi et al.100 (see Table 8). Bands at about 630, 1495, and 350 or 390 cm-1 probably belong to deformation vibrations of the \(-\text{C}-\text{O}-\text{C}-\) group.

6. Rosin and Its Derivatives, Other Natural Resins

Natural resins can be divided into three large groups according to their chemical structure: acid resins, ester resins, and hydrocarbon resins. There is, however, no clean separation between these groups.

Natural resins are usually complex and not yet fully analyzed mixtures containing acids, esters, and other compounds of mainly hydrocarbon nature.

Rosin from conifers consists mainly of abietic acid and isomeric abietic acids. The structure is too complicated for a complete infrared analysis. However, the \(-\text{C}=\text{O}_{\alpha}\)-branched carboxyl group behaves exactly like the other carboxylic acids of this type studied by Bentley et al.215 These authors found for di-\(\alpha\)-branched aliphatic acids one strong band between about 610 cm-1 and 665 cm-1. There is a strong band at 657 cm-1 in the far infrared spectrum of rosin (Figure 54). Another medium to strong band characteristic for both mono- and di-\(\alpha\)-branched aliphatic acids appears between 520 cm-1 and 555 cm-1. Rosin shows this band at about 538 cm-1. Both bands are bending vibrations of the associated carboxylic groups.

Rosin glyceryl ester (Figure 55) has a number of bands in common with rosin itself: 704, 606, 562, and 481 cm-1; it is not unlikely that some of these bands are characteristic for the molecular skeleton of abietic acid.
Maleinate resins are obtained by a Diels-Alder addition of maleic anhydride to resin. They are usually esterified with polyvalent alcohols. The far infrared spectrum of a maleinate resin (Figure 56) also shows the bands at 601, 566, and around 475 cm\(^{-1}\) possibly characteristic for derivatives of aliphatic acid.

Guaiac is a dark-green to brown-black resin obtained from the trunk of Guaiacum officinale. It contains about 70% guaiaconic acid and some other acid and neutral compounds. The bands at about 620, 555, and 450 cm\(^{-1}\) in its far infrared spectrum (Figure 57) are characteristic for the acid constituents.

Vinyl acetate is readily polymerisable with radical catalysts. The amorphous polymers can have molecular weights up to about 5 \(\times 10^5\), and are highly branched. They have found widespread use as binders in surface coatings and cements, for fuel-resistant pipes, and so on.

The infrared spectrum of polyvinyl acetate was studied by Malville et al.\(^{216}\), the Raman spectrum by Simon et al.\(^{217}\). The strongest band in its far infrared spectrum (Figure 59) is at 605 cm\(^{-1}\); a corresponding Raman band was found at 666 cm\(^{-1}\) (Simon et al.\(^{217}\)). This absorption has to be assigned to a bending vibration of the acetate group. Thompson and Torkington\(^{218}\) described two bands in the far infrared as being characteristic for acetates; one near 612 cm\(^{-1}\), the other near 840 cm\(^{-1}\). The band at 630 cm\(^{-1}\) in the spectrum of polyvinyl acetate may be this second acetate band. A fairly strong Raman line is found at 632 cm\(^{-1}\). Most of the other far infrared bands are paralleled by corresponding Raman lines except the one at about 511 cm\(^{-1}\). On the other hand, a very weak Raman line at 560 cm\(^{-1}\) has no
corresponding line in the infrared. Both are weak and may be due to bending vibrations of the polyvinyl chain.

5. Polymers of Acrylic and Methacrylic Acids and Esters (Chart 7)

1. Polymethyl methacrylic acid; Salts of these Acids.

The far infrared spectrum of polymethyl methacrylic acid (Figure 60) shows three fairly strong bands near 690, 515, and 350 cm\(^{-1}\). The first two bands are found in the ranges which were given by Bentley et al.\(^{215}\) for mono-\(\alpha\)-branched carboxylic acids. The band at 350 cm\(^{-1}\) probably belongs to an out-of-plane deformation vibration of the associated carboxyl groups. Part of the Raman spectra of polymethyl methacrylic acid was published by Simon et al.\(^{217}\)

The far infrared spectrum of polymethyl methacrylic acid (Figure 65) is markedly different from that of polymethyl methacrylic acid. The first two far infrared bands of \(\alpha\)-branched carboxylic acids are found here at 612 cm\(^{-1}\) and 552 cm\(^{-1}\). A new band appears near 270 cm\(^{-1}\) and may be due to a methyl torsion vibration.

The far infrared spectrum of the sodium salt of polymethyl methacrylic acid (Figure 61) is not very pronounced. Three bands near 650, 570 and 350 cm\(^{-1}\) are observed above a high background. The 650 cm\(^{-1}\) band is very likely due to the OCO inplane bond. The bands at lower wavenumbers may be due to wagging, rocking or twisting vibrations of the carboxylate ion. Wilkinson\(^{219}\), in his comprehensive study of COOH compounds, has also briefly discussed the far infrared absorption of carboxylic salts.

2. Polymethylene esters.

Esters of acrylic acids with lower aliphatic alcohols polymerise
readily with radical catalysts to form polymers with lower softening points than the corresponding polymethacrylic esters. With increasing molecular weight of the alcoholic component the polymers gradually become soft resins.

The monomer unit \(\text{CH}_2=\\text{COOR} \) in polyacrylic esters contains an asymmetric carbon atom. Consequently, stereospecific polymerization of acrylic esters leads to the formation of isotactic or syndiotactic polymers. Stereospecific catalysts for the polymerization of monomers containing electronegative groups are organometallic compounds like lithium-butyl, lithium-phenyl, phenyl-magnesium bromide, and others. Interestingly, Garrett et al.\(^{220}\) show for the acrylic esters that low temperatures (-70°C favor the syndiotactic addition of monomer units to a growing chain so that radical initiation by ultraviolet or \(\gamma \)-radiation yields crystallizable polymers.

The following authors studied the infrared spectra of stereoregular polyacrylic esters: Miller and Raub\(^{221,222}\), crystalline \(\text{p}-\text{tert-butyl acrylate} \); Garrett et al.\(^{220}\), crystalline polyalkyl acrylates with different alkyl substituents; Kawakami et al.\(^{223}\), stereoregular polymers of \(\text{CH}_{2}=\text{CH}_{\text{CH}_{3}}=\text{CH}=\text{CH}_{2} \), and tertbutyl acrylate; Kawakami et al.\(^{224}\), stereoregular polyethyl- and polypropyl thiolacrylates; Nasayama et al.\(^{225}\), stereoregular polyalkyl thiolacrylates.

Part of the Raman spectrum of polyethyl acrylate was published by Simon et al.\(^{217}\). The infrared spectra of copolymers of styrene with acrylic acid derivatives were studied by Theysse and Smel.\(^{226}\). Schurs et al.\(^{227}\) studied the infrared spectra of all kinds of polyacrylic acid derivatives.

The far infrared spectra of polyacrylic esters with unbranched alkyl substituents (Figures 62-64) are somewhat surprising in that they do not show an absorption of significant intensity between about 550 cm\(^{-1}\) and

72
650 cm⁻¹ (see Lucier and Bentley[29]). This may be due to the α-branched
of the ester group. The strongest band appears between 370 cm⁻¹ and 330
cm⁻¹; with increasing size of the side chain, its maximum shifts to lower
wavenumbers. A second broad and intense band arises at the short-wavelength
flank of the main absorption. It also seems to shift to lower wavenumbers
with increasing size of the side chain.

3. Polymethacrylic esters

Methacrylic acid esters polymerize readily with radical catalysts
to form non-crystallizable and probably mainly atactic polymers. Polymetha-
crylics are more rigid than the corresponding polyacrylates, and have found
widespread use in industry.

A comprehensive study on the infrared spectra of methacrylic esters and
their polymers was done by Salomon et al.[228] The far infrared was covered
between 700 cm⁻¹ and 400 cm⁻¹. Our own results agree well with those of the
authors mentioned. An infrared spectroscopic method for the determination
of double bonds in polymethyl methacrylate was developed by Loschank and
Fox.[229] The infrared spectra of styrene-methyl methacrylate copolymers were
studied by Axelrod.[230] Strupe and Hughes[231] published a study on the struc-
ture of polymethyl methacrylate.

By the use of stereospecific catalysts previously described for poly-
acrylates in this report, stereoregular and crystallizable polymers can be
obtained. Fox et al.[232] described three types of polymethyl methacrylate
with different X-ray patterns and different other properties both in the
crystalline and amorphous states (see Table 22).

In another publication, Fox et al.[233] stated that for steric reasons
isotactic addition of monomer units to growing chains should be favored at

73
<table>
<thead>
<tr>
<th>Type</th>
<th>Glass Temp. °C</th>
<th>Melting Point °C</th>
<th>Density, 30°C (Amorphous) g ml⁻¹</th>
<th>Polymerisation Conditions</th>
<th>Presumed Chain Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>115</td>
<td>200</td>
<td>1.19</td>
<td>Free radical at low temp.; anionic in highly solvating media</td>
<td>Isotactic, crystallizable</td>
</tr>
<tr>
<td>II</td>
<td>45</td>
<td>160</td>
<td>1.22</td>
<td>Organo-lithium cpds. (anionic) in hydrocarbons</td>
<td>Syndiotactic, crystallizable</td>
</tr>
<tr>
<td>III</td>
<td>60-95</td>
<td>170</td>
<td>1.20-1.22</td>
<td>Anionic at low temp. in media of moderate solvating power for cations</td>
<td>Isotactic-syndiotactic block-copolymer</td>
</tr>
<tr>
<td>Conventional</td>
<td>104</td>
<td>-</td>
<td>1.188</td>
<td>Radical catalysts at room temp.</td>
<td>Essentially random</td>
</tr>
</tbody>
</table>
lower temperatures, whereas higher polymerisation temperatures should favor syndiotactic growth.

The infrared spectra of stereoregular polymethyl methacrylates were studied by a number of authors.233-239 Fox et al.233 found large spectral differences near 1065 cm-1 and 750 cm-1 in the spectra of differently polymerised samples, both in the crystalline and in the amorphous states. Miller et al.234 found characteristic bands near 955 cm-1 and 755 cm-1 in the spectrum of a crystalline polymer of presumable isotactic structure; bands present in the spectrum of a conventional polymer near 1063, 965, 913, 825, and 747 cm-1 were missing. Baumann et al.235, on the other hand, found no bands characteristic for an isotactic structure in the rocksalt range. They noted, however, that bands near 1475, 1060, 965, 909, 881, and 806 cm-1 present in the spectra of both syndiotactic and conventional polymethyl methacrylates are missing in the spectrum of an isotactic polymer. Most obvious is the disappearance of a band near 1060 in the spectrum of isotactic samples. From these results, Baumann et al.235 concluded that conventional polymethyl methacrylate has a structure with exceeding syndiotactic arrangement. Fox et al.233, Baumann et al.235, and Kawasaki et al.236 found that a number of bands, especially those near 1060 cm-1, can be found almost unchanged also in the spectra of dissolved or amorphous syndiotactic. (The "P-polymers" of Kawasaki et al is probably identical to the "isotactic" samples of other authors.) Korotkov et al.238 describe bands near 962 cm-1 and 857 cm-1 as characteristic for isotactic polymethyl methacrylate which are missing from the spectrum of a conventional polymer.

The results of the different authors on the infrared spectrum and structure of different samples of polymethyl methacrylate are partially contradictory and do not yield a clear picture. However, it can be accepted as
established that there exist different crystallizable polymers of methyl methacrylate which are non-crystalline to each other and possess different stereoregular structures. As to the conventional polymethyl methacrylate, it is rather likely that it contains a large number of syndiotactic arrangements.

The far infrared spectrum between 15 μ and 2 μ of different samples of polymethyl methacrylate was studied by Nummel and Ruus [12] (see Figures 66 and 67). These authors found a band near 557 cm⁻¹ which is much stronger in isotactic than in syndiotactic samples. The maximum of the band in syndiotactic samples is near 552 cm⁻¹. A doublet with maxima at about 506 cm⁻¹ and 142 cm⁻¹ is also sensitive to tacticity. The component at 506 cm⁻¹ increases with the increasing amount of sample consisting of syndiotactic structures.

Figure 68 shows a sample which was prepared by polymerization at 100ºC with dibenzyl peroxide. The shape of the doublet with maxima near 1350 cm⁻¹ and 500 cm⁻¹ lies between the extremes represented by isotactic (Figure 65) and syndiotactic samples (Figure 67).

The spectra of higher polymethylmethacrylates (Figures 69-71) show that substituents definitely influence the frequency position of the vibrations of the ester group. Thus, polymethyl methacrylates can easily be identified by their far infrared spectra.

F. Cellulose Derivatives (Chart VI)

1. Regenerated Cellulose and Cellulose Ethers.

The far infrared spectra of cellulose (Figure 72) and its allyl ethers (Figures 73 and 74) show a broad absorption band ranging from about 700 cm⁻¹ to 300 cm⁻¹. We have to assume that the bonding vibrations of the
glucose units and the substituents are strongly coupled. In other words, the high absorption background is proof for strong intra and probably intermolecular interactions. From an analytical standpoint, the far infrared spectra of cellulose ethers are of little value.

2. Cellulose Esters.

The far infrared spectra of cellulose esters (Figures 75 to 77) are more significant than those of the others. Cellulose nitrate (Figure 79), hinder from "Duro Cement") is one exception, since organic nitrates do not have strong far infrared absorptions. The strongest band in the far infrared spectra of the carboxylic acid esters is around 600 cm⁻¹. It probably belongs to a bending vibration of the acyl groups attached to the secondary OH groups in the glucose units.

3. Polymers and Other Resins (Chart VII)

1. Linear Aliphatic Polyethers

Linear aliphatic polyethers with the general structure \((\text{CH}_2\text{O})_n\) can be prepared by polymerisation of the cyclic oxides of the general formula \((\text{CH}_2\text{O})_n\). The polymerisation usually has an anionic mechanism and can be initiated, for example, by bases or Lewis bases.

Linear aliphatic polyethers usually have a helical structure.

Miyazawa210 described a general method of normal coordinate treatment by internal coordinates for the vibrational spectra of chain molecules of the general structures \((\text{CH}_2\text{O})_n\), \((\text{CH}_2\text{O})_n\), and \((\text{CH}_2\text{OH})_n\). Tadokoro31,12 derived a method for the numerical calculation of the normal vibrations of helical molecules and used it for the evaluation of the infrared spectrum of polyoxymethylene.
a. Polyoxymethylene. The first member of the series of cyclic aliphatic oxides is formaldehyde (n = 1). It polymerizes readily on standing and forms a crystalline and brittle polymer called "paraformaldehyde," which is a mixture of polymers containing between 8 and 100 monomer units. It took twelve years and fifty million dollars to develop a polyoxymethylene which has a very high molecular weight and is known as "Delrin" (Figure 80) and manufactured by Dupont. Recently, Celanese announced a similar polymer, \(\text{CH}_2 = \text{O} \).

The technical polyoxymethylene is highly crystalline, has blocked end-groups to prevent zip-depolymerisation, and is soluble only in a few solvents like hot dimethylsulfoxide or dimethylformamide. It has a helical structure with nine monomer units and five turns in the identity period of 17.3 Å. Its infrared spectrum, and the spectrum of lower polyformaldehydes, was studied by a number of authors.\(^{11,12,24,25}\)

The far infrared spectrum of polyoxymethylene was studied in detail by Tanokoro et al.\(^ {24,25}\) The results of these authors, together with our own, are shown in Table 2.

Complete assignments of the infrared bands of polyoxymethylene and polyoxymethylene-\(^{15} \text{O} \) are given in the recent paper of Tanokoro et al.\(^ {24,25}\)

b. Polyoxymethylene. Ethylene oxide, \(\text{CH}_2 = \text{O} \), can be polymerised to form liquid or wax-like polymers. In the absence of water and other chain-terminating reagents, fibrous high-polymers with molecular weights around \(10^6 \) can be obtained. In contrast to polyoxymethylene, these polymers are readily soluble in water up to the highest molecular weights obtained. Apparently the intermolecular interactions between the polyoxymethylene chains

78
TABLE 23
Far Infrared Absorptions of Helical,
Crystalline Polyoxymethylene ("Delrin")

<table>
<thead>
<tr>
<th>Literature</th>
<th>This Report</th>
<th>Dichroic Behavior</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavenumber, cm⁻¹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>630-633</td>
<td>629</td>
<td></td>
<td>(\delta (C-O-C)) ((B_1)) (90%), mixed with (\nu_2 (C-O-C))</td>
</tr>
<tr>
<td>155-1530</td>
<td>150</td>
<td></td>
<td>(\delta (C-O-C)) ((E_1)) ((76%)), mixed with (\nu_2 (CH_2))</td>
</tr>
<tr>
<td>232</td>
<td>Not determined</td>
<td>|</td>
<td>Torsional vibration of the C-O-C chain, (A_2)</td>
</tr>
<tr>
<td>22 (calculated)</td>
<td>Not determined</td>
<td>Not determined</td>
<td>Torsional vibration of the C-O-C chain, (A_1)</td>
</tr>
</tbody>
</table>
are lower, and allow the water molecules to separate the chains by forming hydrogen bridges.

Crystalline polyoxyethylene also has helical chains with a fiber period of 19.25 Å. Davison217, from his infrared data, assumed a threefold helix and a gauche-conformation of the monomer units. Mykawa218 later altered Davison's assignments and assumed monomer units in both the trans and gauche-conformations. Miyazawa et al219 did not agree with the earlier assignments and conclusions and made another careful examination of the infrared spectrum between 1500 cm-1 and 50 cm-1 of highly oriented crystalline films. Measurements with polarised infrared were done between 3500 cm-1 and 1500 cm-1. According to these authors, the most likely model with trans-gauche-trans conformation contains seven monomer units and two helical turns per fiber period of 19.25 Å.

Low molecular weight polyoxyethylene glycols are liquids. The infrared spectra were studied by Davison217, and Murada and Kobo.250,251 The far infrared spectrum of a liquid polyoxyethylene glycol (Figure 81) shows only one fairly strong absorption band due to a C-O-C bending vibration with a maximum ranging between 550 cm-1 and 520 cm-1. A second broad band near 260 cm-1 is probably due to a torsional vibration of the chain.

The far infrared spectrum of a highly crystalline polyoxyethylene with a molecular weight about 8.105 (Figure 82) differs strongly from that of a liquid polyoxyethylene glycol. The C-O-C bending vibration has split into two components at 527 cm-1 and 507 cm-1, and a number of new, weak bands has appeared at the red end of the spectrum. The results of Miyazawa et al219 together with ours are shown in Table 24.
<table>
<thead>
<tr>
<th>Wavenumber cm$^{-1}$</th>
<th>Miyasawa et al.</th>
<th>This Report</th>
<th>Dielectric Behavior</th>
<th>Potential Energy Distribution (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>629</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>527 (v)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 (v)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155 (sh)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>372 (v)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>380</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>355</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>322</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>216</td>
<td></td>
<td></td>
<td></td>
<td>δ(CC) (35), γ(CC) (35), δ(CC) (29), ϵ(\theta)</td>
</tr>
<tr>
<td>165</td>
<td></td>
<td></td>
<td></td>
<td>γ(CO) (35), γ(CO) (30), δ(CC) (29), ϵ(\theta)</td>
</tr>
<tr>
<td>107</td>
<td></td>
<td></td>
<td></td>
<td>γ(CO) (35)</td>
</tr>
</tbody>
</table>

Calculated but not observed by Miyasawa et al.
c. Polyoxypolyene. Propylene oxide, \(\text{CH}_2=\text{CH}-\text{CH}_3 \), has an asymmetric carbon atom in its molecule, and consequently can occur in a d- and in an l-form. Price et al.252 described the formation of a crystallizable and optical active polyoxypolyene by the polymerization of l-propylene oxide. They explained the optical activity with an all-l structure of the polymer. Other polymerization conditions yielded a crystallizable but optical inactive polymer apparently consisting of a racemic mixture of all-d and all-l forms. The infrared spectrum of crystalline polyoxypolyene was described by Price and Degen253 and Kawasaki et al.254.

With normal ionic catalysts and with the racemic mixture of propylene oxide liquid or paste-like polymers with relatively low molecular weight are formed. Only the lower members of the homologous series show a slight solubility in water.

The far infrared spectrum of a liquid polyoxypolyene (Figure 83) is rather indistinct. A very broad band between 600 cm\(^{-1}\) and 100 cm\(^{-1}\) is due to bending vibrations of the C-O-C groups, and out-of-plane deformation vibrations of hydroxyl end-groups.

2. Other, Ill-Defined Polymers

Another group of resinous aliphatic ethers are the self-condensation products of aldehydes and ketones. Acetaldehyde condenses to yield

\[\text{H}_2\text{C}=\text{O}+\text{H}_2\text{O} \rightarrow \text{HOCH}_2\text{CH}_2\text{OH} \]

This in turn undergoes further aldehydization and condensation, \(\text{HOCH}_2\text{CH}_2\text{OH} \) a process which finally yields a resin-like material containing alcohols and other groups, and also some unreacted aldehyde groups.

An infrared study on polyacetaldehyde was published by Delaime and Smids255. The far infrared spectrum of an obsolete industrial acetaldehyde...
resin (Figure 8k) is very poor. The very broad absorption between 700 cm\(^{-1}\) and 1450 cm\(^{-1}\) is caused mainly by C-O-C and C=O vibrations. The assignment of the weak but sharp band at about 365 cm\(^{-1}\) is unknown.

A technical condensation product of acetoephone with formaldehyde is used as unsaponifiable resin in surface coatings. According to its infra-red spectrum, it did not contain hydroxyl groups. On the other hand, many of the OC=O residues apparently remained unchanged. This leads to the assumption that the condensation process mainly includes the activated methyl groups:

\[
\text{CH}_3\text{CH} = \text{CO} - \text{CH}_3 + \text{CH}_2\text{O} \rightarrow \text{CH}_3\text{CH} = \text{CO} - \text{CH}_2\text{O} - \text{CH}_2\text{O}.
\]

This keto-ether may further react with its activated methylene group. The far infrared spectrum (Figure 85) contains a number of weak and medium absorption bands, some of which may be assigned to ring vibrations. There is no strong bonding vibration of ether groups evident.

3. Polyvinyl Ethers.

Vinyl ethers polymerize in the presence of Lewis acids to form amorphous polymers of a soft-resin, or rubber-like nature [see Schildknecht et al.\(^{256}\)]. Since there is one asymmetric carbon atom in the monomer unit, -CH=CH\(_2\), stereoregular polymers with isotactic or syndiotactic structure (or both) must be possible. Schildknecht et al.\(^{257}\) polymerized vinlylsobutylether, in analogy to a former German patent of Muller-Thurgau and Herob, with BF\(_3\)-alkylether complexes ("modified Friedel-Crafts catalyst") and obtained rather rigid polymers. These could be fractionated and yielded crystallizable fractions. Later, Watt and his coworkers\(^{258,259}\) were able to obtain a number of isotactic, crystallizable polyvinylethers using...
modified Friedel-Crafts catalysts.

The infrared spectra of some polyvinyl ethers were published by Schiödlmeft. The far infrared spectrum of an amorphous polyvinyl methyl ether (Figure 56) shows two strong bands at about 550 cm\(^{-1}\) and 410 cm\(^{-1}\), rising above a rather high absorption background. These are probably bending vibrations involving the ether group.

The far infrared spectrum of an amorphous polyvinyl isobutyl ether (Figure 57) is more complicated. A number of bands are fused together in a broad absorption covering the range between 600 cm\(^{-1}\) and 550 cm\(^{-1}\). Apparently the bending vibrations of the molecular skeleton couple strongly. The substitution of the methyl by an isobutyl group has put all the skeletal vibrations out of tune. This is consistent with the observation of Keton that the far infrared absorptions of ethers cannot be considered as characteristic group frequencies.

4. Polyvinyl Acetals.

Polyvinyl acetals can be obtained by the reaction of polyvinyl alcohol with aldehydes. Up to about 60\% of the alcoholic groups thus are included in cyclic 1,3-dioxane structures:

\[
\begin{array}{c}
\text{CH}_2 \\
\text{O} \\
\text{CH}_2 \\
\text{X}
\end{array}
\]

The "X" means hydrogen in the case of polyvinyl formal. The far infrared spectrum (Figure 58) of this polymer contains a sequence of medium to strong bands which may be assigned to in-plane and out-of-plane C-O-C bending vibrations of the dioxane ring system. The spectrum of the butyral (X = CH\(_2\)H\(_5\)) (Figure 59) is less significant. The different bands are fused together in

52
one very broad and intense band which covers the range between about 700 cm\(^{-1}\) and 350 cm\(^{-1}\). This is one more example of the strong coupling of vibrations in the far infrared.

5. Epoxydies.

Cleavage double bonds of the type \(\text{C} = \text{C}-\text{H}\) can readily be oxidized to form epoxy groups, \(\text{C} = \text{C}-\text{CH}_2\). The infrared absorption bands characteristic of the oxirane ring were studied by Patterson.\(^{262}\) Isaac\(^{263}\) investigated the far infrared spectra of epoxy compounds and reported a band at about 370 cm\(^{-1}\) as being characteristic for the oxirane ring.

Figure 90 shows a allromatic epoxy resin which contains alcoholic and other groups in addition to the epoxy groups. The former gives rise to a very broad absorption band over the far infrared range. A superimposed band at about 365 cm\(^{-1}\) possibly arises from the epoxy groups in the resin. In the spectrum of a highly epoxidized soy-bean oil (Figure 91), the strongest band at about 600 cm\(^{-1}\) may be due to the epoxy groups.

Widely used in surface coating resins and in castings are aromatic epoxy resins based on Bisphenol-A. The structure is:

![Structure of Bisphenol-A](image)

Since the epoxy groups are only at the ends of the molecule, their relative concentration decreases with increasing molecular weight of the resin. The far infrared spectra of these compounds are very characteristic (Figures 91 and 92). Both an in-plane ring bending vibration and a \(\text{C}-\text{O}-\text{C}\) bending vibration contribute to the very strong absorption at about 575 to 555 cm\(^{-1}\).
The medium band at 375 cm\(^{-1}\) in the spectrum of a low-molecular liquid of this type (Figure 91) belongs to the epoxy groups and can be used for quantitative measurements.

The olefinic double bond in coumarone, \(\text{O} = \text{C} - \text{O}\), is reactive. Polymerization is performed with acids like sulfuric acid, and leads to the formation of resinous polymers. Industrial coumarone resins contain up to 90% indene units.

The infrared spectra of industrial coumarone-indene resins were studied by Hakast and Heine.\(^{26}\) The far infrared spectrum of a rather complex mixture of this type (Figure 91) has its strongest band near 135 cm\(^{-1}\). Poly-indene also has its strongest far infrared band at this frequency.

H. Phenolic Resins

The hydroxyl group on the phenyl ring activates the hydrogen atoms in the ortho and para position to the OH group. These react with formaldehyde under acid or alkaline conditions to form "novolacs" or "resoles." The former contain roughly equimolecular amounts of phenol and aldehyde, and the links between the aromatic rings are methylene bridges. Resoles are formed with an excess of aldehyde and mainly under alkaline conditions. They are highly reactive and contain hydroxymethylene groups, methylene-ether bridges, and some methylene bridges. The hydroxyl group remains practically unchanged.

Ring-alkylsubstituted phenolic resins are widely used in surface coatings. The allyl groups contain at least three carbon atoms. Tert-butyl and tert-octyl are the principally used alkyls.
The infrared spectra of phenolic resins of all kinds were studied by a number of authors.265-272 Soede272 studied the structure of p-tert-butyl phenolic resin and α-naphthol resin by their infrared spectra. His results in the far infrared are shown in Table 25. Since the solid resin is amorphous, it is not surprising that there is almost no difference in the spectra of the solid and the dissolved material. Conley and Bieron272 studied the oxidation of phenol-formaldehyde polycondensates using infrared spectroscopy.

The far infrared spectra of different phenolic resins (Figures 95 to 100) were rather unpronounced and not of much use in the qualitative analysis. A high absorption background ranges from 700 cm-1 to about 300 cm-1. As in the case of amorphous polyethers the bending vibrations of the different polar groups couple strongly, and only a few distinct bands rise above this absorption background.

To obtain more information in these cases, it is helpful to compensate the background with a grid or with another device thus making the bands more prominent. The spectrum of a cresole novolac (Figure 95) was obtained by this method.

I. Nitrogen Containing Resins and Polymers (Chart VIII)

1. Polyanides

Polyamides are widely used as thermoplastics. They contain sequences of secondary amide groups and aliphatic groups. There are two main species of polyanides. The one has the general formula \texttt{R-CO-NH-R-CO-NH-,} and is produced by the polymerization of cyclic amides (lactams). The other one has the general formula \texttt{R-CO-NH-R'-NH-00-,} and is formed by polycondensation of bifunctional acids and amines.

87
<table>
<thead>
<tr>
<th>Solid</th>
<th>Solution</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>685</td>
<td>685</td>
<td>Substituent-characteristic band</td>
</tr>
<tr>
<td>654</td>
<td>653</td>
<td>Substituent-characteristic band</td>
</tr>
<tr>
<td>550</td>
<td>548</td>
<td>δ (OH) out-of-plane</td>
</tr>
<tr>
<td>521</td>
<td>522</td>
<td>δ (OH) out-of-plane</td>
</tr>
<tr>
<td>474</td>
<td>475</td>
<td></td>
</tr>
</tbody>
</table>
If the aliphatic chains are simple methylene chains, the number of carbon atoms is denoted by a number added to the group-name "polyamide." Consequently, "polyamide 6" is a polyamide of the type I with a sequence of five methylene groups in the chain, whereas "polyamide 6,6" is a polyamide of the type II forced from adipic acid and hexamethylene diamine.

Polyamides with a regular structure have a great amount of crystallinity. This is mainly due to the hydrogen bridges connecting the polymer chains. By drawing out a fiber or film, more of the hydrogen bridges "snap in." This process is accompanied by changes in the infrared spectrum.

Copolyamides having different monomer units in a chain show a considerably lower degree of crystallization and also a lower melting range. On the other hand, they are more readily soluble in the conventional solvents and can be used as components in surface coatings.

The infrared spectra of polyamides were studied by a large number of authors. The planar and strongly polar secondary amide group with its infrared active vibrations governs the spectrum of polyamides. The characteristic bands of the secondary amide group were numbered from I to VI. Actually, all of these are sensitive to the physical state of the sample. This is due to (1) the strong hydrogen bridges within and between the chains in solid or molten samples which may be partially broken in solutions, and (2) the strong mechanical coupling between different vibrational modes, for instance, between $\nu(C=O)$ and $\delta(\text{NH})$.

Table 26 shows the different characteristic bands of the secondary amide group in crystalline polyamides, together with their assignments. The values were partially taken from the literature, partially from our own spectra. A seventh amide band was added which probably has to be assigned to a torsional
TABLE 26
Characteristic Infrared Bands of Secondary Amides

<table>
<thead>
<tr>
<th>No.</th>
<th>Approximate Wavenumber, cm⁻¹</th>
<th>Assignment</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1640</td>
<td>γ (C = O)</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>1545</td>
<td>γ (C-N) + δ(NH)</td>
<td>Strong coupling</td>
</tr>
<tr>
<td>III</td>
<td>1280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>690</td>
<td>γ (NH assoc.)</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>530</td>
<td>δ as(O-C=H)</td>
<td>Strong coupling between IV, VI, and VII</td>
</tr>
<tr>
<td>VI</td>
<td>520-550 (variable)</td>
<td>δ s(O-C=H)</td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>290-600</td>
<td>Y s(O-C=O)</td>
<td></td>
</tr>
</tbody>
</table>

Assignment tentative.
vibration of the O=C-N group. Actually, the frequency range for this bond
is rather broad for one observing the designation "characteristic frequency."
However, it is a fairly strong band which can usually be identified without
difficulty. In polyamides with the structure \(\text{R-CO-NH-R-CO-NH} \), the amide-VII
band is often found near 300 cm\(^{-1}\), whereas in polyamides with the structure
\(\text{R-CO-NH-R'-NH-CO} \), it is often found near 350 cm\(^{-1}\) accompanied by a weaker
band 30-50 wavenumbers higher. This observation, however, has to be con-
firmed by more experimental material.

The far infrared spectra of polyamides (Figures 101-108), generally
speaking, are very characteristic and useful for qualitative and structural
analysis.

Figure 102 (polyamide-6, polycapro lactam) was obtained from seven layers
of a thin film which was previously oriented in two dimensions. Apparently,
the degree of crystallinity is lower than in the sample obtained from fomic
acid solution (Figure 101). This is indicated by the higher background and
the less prominent bands. Also, the intensity of the doublet at about 725
cm\(^{-1}\) and 690 cm\(^{-1}\) has reversed.

Copolyamides also show a lower degree of crystallinity. Hence, in the
spectrum of a terpolyamide (formed from equal parts of hexamethylene diam-
monium adipate, caprolactam, and the adipate of p,p'-diamino-dicyclohexyl-
methane) the absorption background is high, and the absorption bands are
broad (Figure 108).

Polyamides of a special kind are the liquid or resin-like "Versamids." They
are formed by condensation of di- and trimer unsaturated fatty acids
with aliphatic polyamides. They contain free amine groups and are used as
curing agents for epoxies. In the spectrum of one of these resins (Figure
109) the bands at about 590, 520, and 430 cm\(^{-1}\) originate from vibrations of
the amide group.
2. Amino and Ameido Formaldehyde Resins

Formaldehyde reacts with active hydrogen atoms of amino or amido groups to form methylol compounds which in turn are also highly reactive. For surface coating resins, these methylol compounds are partly etherified with butanol or other aliphatic alcohols; the rest serve for the crosslinking during the curing of the film.

The infrared spectra of urea-formaldehyde resins were studied by Becker. He found that the primary methylol ureas in acid solution, pH < 3, react in the way of a condensation reaction and mainly form methylene ureas, \(\text{[NH-CH-CH-NH}_2\text{]}_n\text{[NH-CH-NH}_2\text{]}\) plus some methylol methylene ureas, \(\text{[HNC}_2\text{[NH-CH-CH-NH}_2\text{]}_n\text{CH}_2\text{OH]}\). Excessive formaldehyde favors the formation of methylol groups. Acid-cured urea-formaldehyde resins contain only methylene bridges.

The far infrared spectrum of a butylated urea-formaldehyde resin (Figure 110) shows only one strong and broad band with its maximum around 655 cm\(^{-1}\). A weak shoulder appears around 940 cm\(^{-1}\). Both absorptions are very likely caused by bending vibrations of the \(\text{O-N-C-N}^+\) group, and of bending vibrations of the other groups.

Melamine, \(\text{H}_2\text{N-N-C-N-NH}_2\), has six active hydrogen atoms which readily

react with formaldehyde to form methylol groups. These in turn can be etherified, or react with amino hydrogen or other methylol groups. Melamine resins have obtained considerable application for mouldings and in surface coating lacquers.
The infrared spectra of triazine derivatives were studied by a few authors. The infrared spectra of melamine and melamine-d$_6$ were investigated by Jones and Orville-Thomas between 5000 cm$^{-1}$ and 150 cm$^{-1}$. The results indicate that the molecule is planar.

The far infrared spectrum of an etherified melamine-formaldehyde resin (Figure 111) similar to that of an urea-formaldehyde resin, shows only one broad and intense band with its maximum around 630 cm$^{-1}$. At least two vibrational modes contribute to this band, an in-plane bending of the triazine ring, and a C-O-C bending vibration of the ether groups. In oil-modified melamine resin showed an additional absorption from the vegetable oil at about 1590 cm$^{-1}$ (Figure 112).

Benzoguanamine resins are often used in combinations with other amino- or amido formaldehyde resins and alkyl resins. The far infrared spectrum (Figure 113) is characterised by a strong, asymmetric band with its maximum at 615 cm$^{-1}$ and two weaker, but rather sharp bands at 650 cm$^{-1}$ and 320 cm$^{-1}$.

Sulfonamide-formaldehyde resins are less common than the other resins described above. Best known are the toluene sulfonamide resins. The far infrared spectrum of a resin of this type (Figure 114) is very pronounced by strong bands at 660, 590, and 945 cm$^{-1}$, caused by deformation vibrations of this group:

\[
\begin{align*}
 & \text{C} \\
 & \text{S-N-C} \\
 & \text{O} \\
\end{align*}
\]

The infrared spectra of some sulfonamides between 1000 cm$^{-1}$ and 400 cm$^{-1}$ were studied by Baxter et al.
3. Other Nitrogen Containing Resins and Polymers

 a. Polyurethanes and Isocyanates. Isocyanates react with active hydrogen atoms according to the following mechanism:

 \[-\text{N} = \text{C} = \text{O} + \text{H-X} \rightarrow \text{H-N} = \text{C} = \text{O} - \text{X}.\]

 With alcohols, urethanes are formed as follows: \[-\text{N} = \text{C} = \text{O} + \text{ROH} \rightarrow \text{H-N} = \text{C} = \text{O} - \text{OH}.\] Polyurethanes are formed by using di or polyfunctional isocyanates and alcohols. The reactions of isocyanates were extensively studied by Bayer300-302 and later found tremendous industrial application.

 Most of the industrially important polyurethanes, contrary to the polyesters or polynides, do not contain the characteristic group in regular sequences. The di- or trifunctional isocyanates are used principally as connecting links between long chain polyesters or polyethers with hydroxyl end groups. Thus the specific properties of the urethane group do not determine the properties of the polymer compound.

 Polyurethanes with \(-\text{N} = \text{O} = \text{O}-\) as a characteristic group should exhibit spectral similarities to amides as well as esters. This is true for the rock-salt range where the carbonyl band found in urethanes absorbs near 1720 cm\(^{-1}\) and the amide II band at 1540 cm\(^{-1}\). In the far infrared a characteristic absorption band probably arising from an out-of-plane deformation vibration of the associated \(\text{NH}\)-group often appears between 600 cm\(^{-1}\) and 650 cm\(^{-1}\).

 "Urethane \(U_0\)" is an aliphatic polyurethane from hexamethylene disiocyanate and butanediol-1,4. It is exceptional in having a regular sequence of urethane groups and being based on an aliphatic isocyanate. The strongest band in its far infrared spectrum (Figure 115) has its maximum at 840 cm\(^{-1}\). The band is rather broad and due to this fact and its wavenumber position, it resembles the amide band V of secondary amides.

94
The Adiprene L-100 and L-167 are polytetrahydrofuranes which were reacted with a mixture of the isomeric toluene diisocyanates. Thus the end groups in the adiprene have the following structures:

\[-(CH_2)_4-O-C=NH-CH_3 \quad \text{or} \quad -(CH_2)_4-O-C=NH-CH_3\]

If the assignment stated above is correct, then the absorption at about 630 cm\(^{-1}\) in the spectra of the adiprenes (Figures 116 and 117) is due to the urethane groups. A similar band occurs at 620 cm\(^{-1}\) in the spectrum of Desmodur TT stabil II (Figure 118), which is a pheny lurethane of the dimerized toluene-2,4-diisocyanate. It is dubious whether the band at 613 cm\(^{-1}\) in the spectrum of “Desmodur 4P stabil II” (Figure 119) has the same origin. This resin is a pheny lurethane of a reaction product of one mole hexamethylen and three moles toluene-diisocyanate.

The infrared absorptions of the isocyanate group were studied by a few authors. The far infrared absorptions of this group are uncertain. There should be at least one fairly strong bending vibration of this type: \(-C=NO\). This vibration probably mixed with bending vibrations of the adjacent groups. All of the molecules containing isocyanate groups, studied by us (Figures 116-120), exhibited a fairly strong band between 550 cm\(^{-1}\) and 505 cm\(^{-1}\) and a medium but sharp band near \(440 \text{ cm}^{-1}\). One of these may tentatively be assigned to the bending vibration shown above.

Aylene DM has the following structure:

\[-C(\text{phenyl})-CH_2-\text{CH}_3-\text{NO}^{-}\]

The Adiprene have the strongest bands at 560 cm\(^{-1}\) and 445 cm\(^{-1}\). At least
the former partly stems from the other linkages in the polytetrahydrofurane chain. "Desmodur N stabil" has similar bands at 555 cm\(^{-1}\) and 145 cm\(^{-1}\).

Its structure is:

Further work is necessary to find out if this pair of bands is characteristic for the isocyanate group, whether monomeric or dimeric, or if it is related to the 1,2,4-substituted ring systems.

b. Polycrylonitrile. For industrial purposes acrylonitrile is usually copolymerized with small amounts of other comonomers like vinyl acetate or acrylic acid. On the other hand, certain plastics like high-impact polystyrenes, and synthetic rubbers like the "Buna N" type butadiene copolymers contain smaller or larger amounts of acrylonitrile units in their chains.

The infrared spectrum of polycrylonitrile was studied by a number of authors. \(^{306,308}\) Liang and Kriz\(^{306}\) gave a rather complete assignment of the bands between 3200 cm\(^{-1}\) and 70 cm\(^{-1}\). Table 27 shows their results for the bands below 700 cm\(^{-1}\).

The far infrared spectrum of a copolymer with about 6% vinyl acetate (Figure 121) shows, in addition to the bands of polycrylonitrile, absorptions near 603 cm\(^{-1}\) and 630 cm\(^{-1}\) belonging to vibrations of the vinyl acetate units.

96

Approved for Public Release
<table>
<thead>
<tr>
<th>Wavenumber, cm$^{-1}$</th>
<th>Intensity</th>
<th>Dichroic Behavior</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>675</td>
<td>w</td>
<td>-</td>
<td>Combination vibration</td>
</tr>
<tr>
<td>532</td>
<td>m</td>
<td>⊥</td>
<td>δ(C-CN)</td>
</tr>
<tr>
<td>128</td>
<td>w</td>
<td>⊥</td>
<td>δ(CN)</td>
</tr>
<tr>
<td>259</td>
<td>ms</td>
<td>Not determined</td>
<td>Υ_6(C-CN)</td>
</tr>
<tr>
<td>127</td>
<td>vs</td>
<td>Not determined</td>
<td>Υ_6(CN)</td>
</tr>
<tr>
<td>86</td>
<td>mw</td>
<td>Not determined</td>
<td>Subtraction vibration</td>
</tr>
</tbody>
</table>
Yamadera307 described an infrared spectroscopic method for the determination of end groups in polyacrylonitrile. Bayser and Schurr308 investigated the saponification products of polyacrylonitrile and of vinyl chloride-acrylonitrile copolymers.

c. Polyvinylcarbazole. Polyvinylcarbazole has the monomer unit
\[
\begin{array}{c}
\text{N} \\
\text{CH=CH-}
\end{array}
\]
and is a very hard and high-melting resin. It has outstanding dielectric properties and is used in surface coatings.

Its far infrared spectrum (Figure 129) is characterized by a number of pronounced bands. The one at 530 cm\(^{-1}\) is probably an in-plane bending vibration of the o-substituted rings. A fairly strong band near 420 cm\(^{-1}\) is probably caused by an out-of-plane ring bending vibration involving the nitrogen atom.

j. Silicones

The name "silicone" is derived from "ketone" since both have analogous general formulas: R-CHO-H and \((\text{C}-\text{C}0-\text{H})\text{H}\). However, Si is not able to form double bonds, and therefore the term "polysiloxanes" is more correct.

The most commonly used silicones are the polydimethylsiloxane and the polymethylphenylsiloxane. The former is the main constituent in silicone rubbers, the latter is often found in resin combinations for high-temperature surface coatings.

The infrared spectra of polysiloxanes and similar silicon compounds were extensively studied.309-320 Generally, vibrations involving chemical groups with silicon are about five times as strong as those of similar groups with carbon. This is also true for the far infrared where the bending vibrations
of the siloxane chain and of the substituents cause extremely strong bands.

The far infrared spectrum of polydimethylsiloxane (Figure 123) is comparatively simple but very characteristic. Two very strong bands near 475 cm⁻¹ and 385 cm⁻¹ dominate the spectrum. They are very likely caused by a Si-O-Si bending, and by an O-Si-CH₃ bending vibration, respectively. The band near 275 cm⁻¹ may be due to a methyl twisting vibration.

Similar bands, though with reversed intensity, are found in the far infrared spectrum of a polymethylphenylsiloxane (Figure 124). The band near 605 cm⁻¹ probably belongs to an in-plane bending vibration; the one near 1410 cm⁻¹ to an out-of-plane bending vibration of the nonsubstituted ring. The latter apparently couples with a skeleton vibration of the siloxane chain; this would explain its intensity.

Harvey and Nebourgall assigned a strong band near 515 cm⁻¹ in the spectra of compounds with the C₆H₅-Si-C₆H₅ group to the asymmetric stretching vibration of the group C-Si-C. For methyl phenyl siloxanes, we would prefer to assign tentatively the sharp and strong band at 665 cm⁻¹ to an Si-phenyl stretching vibration and a band near 510 cm⁻¹ to an O-Si-phenyl bending vibration.

X. Waxes and Asphalts

Aliphatic asphalts do not significantly absorb in the far infrared (Figure 125). Moutan wax is a mineral wax which contains long chain fatty acids and high molecular weight aliphatic esters. The strongest band at 510 cm⁻¹ in the far infrared spectrum (Figure 126) belongs to a bending vibration of the O-CO-C grouping. Beeswax is a mixture of myrcyl palmitate, long chain fatty acids and small amounts of other compounds. The far infrared spectrum of the liquid (not shown) exhibits three very broad absorptions.
belonging to deformation vibrations of the ester and carboxylic groups. The spectrum of the crystalline wax (Figure 27) shows numerous absorption bands. The maxima at 550, 540, 430, and 400 cm\(^{-1}\) are best suited for identification. Carnauba wax is a palm wax consisting mainly of high molecular weight hydrocarbons, higher alcohols and their esters and small amounts of other compounds. The far infrared spectrum (Figure 128) is sufficiently characteristic for an identification. The strongest band at 515 cm\(^{-1}\) belongs to the bending vibration of the ester and carbonyl groups. Candelilla wax is obtained from certain shrubs in Mexico and Japan. Chemically, it is a mixture of high molecular weight hydrocarbons and ester and acid resins. It is rather unsaturated. Its far infrared spectrum (Figure 129) shows some similarities to the spectrum of Montan wax (Figure 128). However, the absorptivity of the strongest band at 545 cm\(^{-1}\) is about three times lower in Candelilla wax due to its content of hydrocarbons.

Generally, both natural and synthetic waxes may readily be identified by their far infrared spectra.

5. Plasticizers

1. Aliphatic Esters of Carboxylic Acids.

The far infrared spectra of higher aliphatic esters are rather uncharacteristic in showing only the absorptions of the ester group. Consequently, aliphatic ester-type plasticizers cannot be easily identified by their far infrared spectra. The main absorptions in the spectra of diethylhexyladipate (Figure 130) and diethylhexylsebacate (Figure 131) were at 550, 450, and about 300 cm\(^{-1}\).

2. Phthalates (Chart IX)

Esters of the o-phthalic acid have altogether four characteristic
absorptions in the far infrared. The first, with one exception, is always found at exactly 650 cm⁻¹. Since it is very sharp and usually has no surrounding bands, it can be used for quantitative determinations. Only in the case of phenolic esters of the phthalic acid, the conjugated π-electron system produces a slight shift of this absorption from 650 cm⁻¹ to about 655 cm⁻¹. The second, and also rather strong band occurs in the wider range between 560 cm⁻¹ and 590 cm⁻¹. The third band is usually found around 400 cm⁻¹ and partially fused with a very broad and strong band between 330 cm⁻¹ and 350 cm⁻¹. The other bands in the spectra of phthalate plasticizers (Figures 132-147) serve as "finger-print bands" for the identification of the individual compounds.

The assignment of the bands at 650 cm⁻¹ and between 550 cm⁻¹ and 590 cm⁻¹ is not clear. The in-plane bending vibration of ortho-disubstituted benzene derivatives was found between 595 cm⁻¹ and 655 cm⁻¹ as a weak to medium band. The infrared active out-of-plane ring deformation vibration was found between 428 cm⁻¹ and 470 cm⁻¹ as a medium to strong band.¹¹ On the other hand, the asymmetric bending vibration of the ester group is sometimes found as high as 690 cm⁻¹. This strongly suggests the band at 650 cm⁻¹ to be an ester bending vibration. However, this vibration is known to be very sensitive to the kind of substituent, and this band is the phthalates apparently is not. Furthermore, the other band between 560 cm⁻¹ and 590 cm⁻¹ varies its maximum with the kind of substituent and is well in the range of a bending vibration of the ester group.

It is a likely assumption that the two carboxyl groups being conjugated to the benzene ring alter the ranges of the ring vibrations considerably. Actually, no band in the range for the out-of-plane ring deformation vibration (470-418 cm⁻¹) could be found. We should, therefore, prefer to consider the
band at 650 cm$^{-1}$ as a vibration of the aromatic system, and the next one as an ester vibration. The band near 350 cm$^{-1}$ is probably an out-of-plane vibration of the ester group. Further assignments were not tried.

3. Phosphates (Chart X)

The infrared spectra of phosphoric acid esters and similar compounds were studied by a large number of authors. Owing to the strong polarity of the phosphate group, its stretching and deformation vibrations give rise to intense absorptions both in the rocksalt range and in the far infrared.

Table 28 shows the far infrared absorptions of some phosphoric acid esters between 700 cm$^{-1}$ and 250 cm$^{-1}$, found by Mortimer327 and in our study. As to the assignments, it may be helpful first to consider the phosphate group as an isolated unit: P(=O)O. This should exhibit two infrared active bending vibrations: a symmetric one and an asymmetric one (compare the bending vibrations of a methyl group). These bending vibrations should give rise to rather strong infrared bands. If alkyl groups are attached to the three single-bonded oxygen atoms the C-O bending vibrations will appear in the spectrum, but will be coupled with the P-O bending vibrations.

Actually, the spectra of alkylphosphates show two strong bands between 525 cm$^{-1}$ and 560 cm$^{-1}$ and between about 1500 cm$^{-1}$ and 1660 cm$^{-1}$. Their position in the spectrum is very sensitive to the kind of substituent. Other bands, partially fused with the ones mentioned above, occur in the same range but are somewhat weaker. They are also sensitive to the kind of substituent. This clearly shows that we have a set of mixed vibrations involving both bending of the PO$_3$ groups and bending of the C-O-P angles.
TABLE 28

Far Infrared Absorptions of Some Liquid Phosphoric Acid Esters*

Between 700 and 250 cm\(^{-1}\)

<table>
<thead>
<tr>
<th>Triethylphosphate(^1)</th>
<th>Triethylphosphate(^1)</th>
<th>Tri-n-butylphosphate(^2)</th>
<th>Triphenylphosphate(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(cm(^{-1}))</td>
<td>(cm(^{-1}))</td>
<td>(cm(^{-1}))</td>
<td>(cm(^{-1}))</td>
</tr>
<tr>
<td>526</td>
<td>545</td>
<td>557 + 540 (sh)(^3)</td>
<td>687</td>
</tr>
<tr>
<td>500</td>
<td>525</td>
<td>510</td>
<td>680</td>
</tr>
<tr>
<td>459</td>
<td>465</td>
<td>463</td>
<td>579</td>
</tr>
<tr>
<td></td>
<td></td>
<td>425</td>
<td>570</td>
</tr>
<tr>
<td></td>
<td></td>
<td>363</td>
<td>497</td>
</tr>
<tr>
<td></td>
<td></td>
<td>275</td>
<td>495-505</td>
</tr>
</tbody>
</table>

1 Mortimer\(^{27}\)

2 This Report

3 sh = shoulder
Crystallization causes considerable changes in the far infrared spectrum of phosphoric acid esters. The ones shown in this report (Figures 148-156) were all in the liquid state.

M. Monomers (Chart 81)

Olefín-type monomers usually have one of the two following general structures:

\[
\begin{align*}
\text{vinyl type} & \quad \text{vinylidene type} \\
X-\text{CH}=\text{CH}_2 & \quad \text{or} \quad X-\text{CH} \equiv \text{CH}_2 \\
Z-\text{C}=\text{CH}_2 & & Y-\text{C}=\text{CH}_2 \\
(\text{vinyl type}) & & (\text{vinylidene type})
\end{align*}
\]

Both the vinyl and the vinylidene group have very significant absorptions in the rovibronic range caused by the C=O stretching and the out-of-plane deformation vibrations of the hydrogen atoms attached to the olefinic double bond.

In the far infrared we may expect a torsional vibration of the \(=\text{CH}_2\) group, and deformation vibrations of the substituents \(X, Y,\) or \(Z\) of the following types:

\[
\begin{align*}
X-\text{CH}=\text{CH}_2 & \quad \text{or} \quad X-\text{CH} \equiv \text{CH}_2 \\
Z-\text{C}=\text{CH}_2 & \quad \text{or} \quad Z-\text{C}=\text{CH}_2 \\
Y-\text{C}=\text{CH}_2 & \quad \text{or} \quad Y-\text{C}=\text{CH}_2
\end{align*}
\]

Bentley and Wolfarth described the following absorptions of different alkenes in the far infrared (see Table 29). Harrah and Mayo later found that all 1-alkenes, with the exception of propane, exhibit two medium infrared bands near 630 cm\(^{-1}\) and 550 cm\(^{-1}\). Both bands are caused by a vibration of the vinyl group, probably the torsional vibration of the \(=\text{CH}_2\) group. It is very likely that the band near 550 cm\(^{-1}\) belongs to an almost planar conformation of the vinyl group with the \(\text{C}_2-\text{O}_4\) plane. The band near 630 cm\(^{-1}\) probably belongs to the more stable conformation where the vinyl group is

\[\text{Infrared}
\]

Approved for Public Release
<table>
<thead>
<tr>
<th>Unbranched</th>
<th>β-Branch</th>
<th>Remote Branch</th>
<th>cis-2-Alkenes</th>
<th>trans-2-Alkenes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(cm⁻¹)</td>
<td>(cm⁻¹)</td>
<td>(cm⁻¹)</td>
<td>(cm⁻¹)</td>
<td>(cm⁻¹)</td>
</tr>
<tr>
<td>637-689</td>
<td>625-626</td>
<td>588-571</td>
<td>417-385</td>
<td>303-286</td>
</tr>
<tr>
<td>554-569</td>
<td>559-532</td>
<td>588-465</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Approved for Public Release
rotated around the C₂-C₃ bond by angles of ± 30° or ± 90°. Apparently branching of the alkyl chain may favor one of the other conformation, as suggested by the results of Bentley and Wolfearth. This is the in-plane bending vibration of the C-C-X group (X = O or CH₃) was found for propylene-331 near 647 cm⁻¹, for butene-332 near 657 cm⁻¹, and for vinyl ethers333 between 621 cm⁻¹ and 678 cm⁻¹, depending on the conformation of the molecule.

Most of the olefin-type monomers studied in this report exhibit a band between about 375 cm⁻¹ and 130 cm⁻¹ in their far infrared spectra (Figures 138-174). The intensity is varying from weak to strong depending upon the substituents. We assign this band tentatively to the C-C=C in-plane bending vibration.

Vinylidene-type monomers with the general structure: \[Y \rightarrow C = OCH₂ \]
usually exhibit a medium band between 505 cm⁻¹ and 510 cm⁻¹. It is not unlikely that this band is caused by the asymmetric, degenerate in-plane bending vibration of the \(Y \rightarrow C \) group. However, neither the assignment nor the range given here can be considered as final, especially since this vibration, in its nature and its frequency, depends upon the nature of the substituents.

Aromatic monomers (Figures 160-262) show additional bands due to deformation vibrations of the aromatic ring system.

Ester type monomers display absorptions of the ester group around 1760 cm⁻¹ and 1736 cm⁻¹. In addition to these, methacrylates are well characterized by a doublet at 1770 cm⁻¹ and 1740 cm⁻¹ probably arising from the \(\alpha \)-methyl group.
VI. Solvents

The spectra (Figures 175-192) show a number of substances which are frequently used as solvents for polymers and resins, or as dispersants for mulls (paraffin oil). Since small amounts of the solvent frequently cannot be removed from the polymer even by long drying in a vacuum oven, it is very important to know where the strongest bands of the solvent may occur in the spectrum. In some cases, the polymer may interact with the remaining solvent molecules in a way that small shifts in the band maxima, and also changes in the absorptivity of the bands occur.

Chloroform is a very good solvent for many polymers and resins. Unfortunately, it often sticks tenaciously in the sample and adulterates the spectrum with its strong or medium bands at 667, 685, and 365 cm\(^{-1}\) (Figure 178). Since methylene chloride is also an excellent solvent and does not absorb too much in these ranges (Figure 177), it is sometimes advisable to make use of this solvent. Evaporation of methylene chloride from the film should not be performed too rapidly because water will then condense and spoil the film.

A very reasonable solvent for the far infrared is benzene (Figure 199) since it has only one weak absorption at 365 cm\(^{-1}\) in the range between 600 and 300 cm\(^{-1}\). Rather universal solvents are dimethyl sulfoxide (Figure 156) and dimethylformamide (Figure 169). Both do not absorb between about 650 cm\(^{-1}\) and 400 cm\(^{-1}\). Due to the similarity in structure the spectra are also rather similar.
IV. REFERENCES

73. Natta, G., Porti, L., Manzelli, A. and Noriero, D., Chim. e Ind. (Milano), 41, 368 (1959).

Approved for Public Release

Approved for Public Release

119

313. Frisch, H., Martin, I. and Marks, R., Monatsh. 84, 290 (1953).

122
APPENDICES

INFRARED SPECTRA AND CORRELATION CHAOS
APPENDIX A

COLLECTION OF SPECTRA OF
HIGH POLYMERS, RESINS, AND RELATED SUBSTANCES
IN THE 700-250 cm\(^{-1}\) REGION

1-5

Approved for Public Release
Figure 1. - Infrared Spectrum from 500 to 250 cm$^{-1}$ of Water Vapor
Figure 2: Infrared Spectrum from 700 - 250 cm$^{-1}$ of a Cesium Bromide Plate
Figure 3. Infrared Spectra from 650 - 500 cm$^{-1}$ of Marlex 50 (Linear Polyethylene) and High Pressure Polyethylene (branched).

Recorded as pressed sheets.
Figure 5. - Infrared Spectrum from 800 - 300 cm$^{-1}$ of Polypropylene (Partly Isotactic, Amorphous and Rubber-like) recorded as a pressed sheet.
Figure 6. - Infrared Spectrum from 700 - 250 cm⁻¹ of Polypropylene (Isotactic, Crystalline and Biaxially Oriented)

Recorded as a film, 0.3 mm in thickness
Figure 7. - Infrared Spectrum from 700 - 250 cm⁻¹ of Polybutene-1 (Isotactic and Crystalline)
Recorded as a pressed film approximately 0.6 mm in thickness
Figure 9. - Infrared Spectrum from 375 - 250 cm⁻¹ of Vistanex LM (Polyisobutylene) recorded as a film.
Figure 10. Infrared Spectrum from 750 - 250 cm\(^{-1}\) of Butarez 25 (Atactic Polybutadiene in Liquid State) Recorded as a capillary film.
Figure 11. - Infrared Spectrum from 700 - 300 cm$^{-1}$ of cis 1,4-Polybutadiene (Small Amounts of Other Structures also Present)
Recorded as a film from chloroform solution
Figure 12. - Infrared Spectra for 1,4-Polybutadiene (Small amounts of other structures also present)

Recorded as a film approximately 0.05 mm in thickness, prepared from a chloroform solution.
Figure 13. - Infrared spectrum from 800 to 300 cm⁻¹ of Hycar 1042 (Butadiene-Acrylonitrile Copolymer, 70:30)

Recorded as a pressed film approximately 0.16 mm in thickness
Figure 14. - Infrared Spectrum from 800 – 250 cm⁻¹ of Hevea (ciss 1,4-Polyisoprene) recorded as a film approximately 0.11 mm in thickness, prepared from a chloroform solution.
Figure 15. - Infrared Spectrum from 800 to 250 cm⁻¹ of Shell Isoprene 300 XB (cis 1,4-Polyisoprene) recorded as a film approximately 0.135 mm in thickness, prepared from a chloroform solution.
Figure 16. Infrared Spectrum from 775 - 250 cm⁻¹ of Balata (trans 1,6-polyisoprene) recorded as a film prepared from chloroform solution.
Figure 17. - Infrared Spectrum from 775 - 250 cm\(^{-1}\) of Gutta Percha (Crystalline trans 1,4- Polyisoprene)
Recorded as a film prepared from chloroform solution
Figure 18. - Infrared Spectrum from 725 - 250 cm⁻¹ of Polystyrene (Atactic, Amorphous)
Recorded as a film
Figure 19. - Infrared Spectrum from 700 - 250 cm$^{-1}$ of Polystyrene (Isotactic, Crystalline)

Recorded as a film, prepared from benzene solution
Figure 10. - Infrared Spectrum from 725 - 250 cm⁻¹ of Zerlon 50 (Styrene-butyl methacrylate Copolymer 50:50)

Recorded as a film approximately 0.085 mm in thickness, prepared from a chloroform solution.
Figure 41. - Infrared Spectrum from 700 - 250 cm⁻¹ of Poly-α-methylstyrene
Recorded as a film, prepared from a chloroform solution
Figure 22. - Infrared Spectrum from 800 - 250 cm⁻¹ of Poly-p-Methylstyrene (Atactic)
Recorded as a film approximately 0.015 mm in thickness, prepared from chloroform solution
Figure 23. - Infrared Spectrum (from 700 - 250 cm\(^{-1}\)) of Poly-p-Isopropylstyrene (Atactic)
Recorded as a film approximately 0.05 mm in thickness, prepared from a chloroform solution.
Figure 24. - Infrared Spectrum from 700 to 300 cm\(^{-1}\) of Cymac 201 (Vinylclosures-Acrylonitrile Copolymer 70:30).

Recorded as a film approximately 0.15 mm in thickness, prepared from a chloroform solution.
Figure 25. - Infrared Spectrum from 700 - 250 cm⁻¹ of Gebagan J100 (Polyindene)

Recorded as a film, prepared from a chloroform solution
Figure 26. - Infrared Spectrum from 750 - 250 cm⁻¹ of Genotherm Kalle (Polyvinylchloride)
Recorded as a film approximately 0.03 mm in thickness.
Figure 27. - Infrared Spectrum from 750 - 250 cm⁻¹ of VC-VAc-CP (Vinyl Chloride-Vinyl Acetate Copolymer 85:15)

Recorded as a film approximately 0.07 mm in thickness
Figure 29. Infrared Spectrum from 800 - 250 cm⁻¹ of Chlorobutyl (Low Chlorinated Polyisobutylene) Recorded as a Pressed Film.
Figure 30. Infrared Spectrum from 750 - 350 cm\(^{-1}\) of Chlorinated High Pressure Polyethylene recorded as a pressed film approximately 0.1 mm in thickness.
Figure 31. - Infrared Spectrum from 800 - 150 cm⁻¹ of Hypalon 20 (Sulfurchlorinated High Pressure Polyethylene)
recorded as a pressed film.
Figure 32. - Infrared Spectrum from 800 - 250 cm$^{-1}$ of Pliofilm Zelle (Rubber Hydrochloride) Recorded as a film 0.04 mm in thickness.
Figure 33. Infrared Spectra from 700 - 250 cm⁻¹ of Pergut S 90 (Chlorinated Rubber)
Recorded as a film approximately 0.05 mm in thickness, prepared from a chloroform solution.
Figure 34. - Infrared Spectrum from 750 - 250 cm⁻¹ of Tedlar (Polyvinylfluoride)
Recorded as a film 0.053 mm in thickness
Figure 25. Infrared spectrum from 800 - 390 cm$^{-1}$ of polyvinylidene fluoride recorded as a film approximately 0.05 mm in thickness prepared from dimethyl formamide solution.

TRANSMITTANCE

WAVENUMBER IN CM$^{-1}$

POLYVINYLIDENE FLUORIDE

160

Approved for Public Release
Figure 5c. Infrared Spectrum of 750 to 275 cm⁻¹ of Hostalen TF 14 (Polytaurolactoneethylene) recorded at 0.01 mm Hg. Thin disc (upper curve) and thin slices (lower curve).
Figure 37. - Infrared Spectrum from 750 - 250 cm\(^{-1}\) of KEL-F 827 (Chlorotrifluoroethylene-Vinylidene Fluoride Copolymer)

Recorded as oriented film approximately 0.04 mm in thickness.
Figure 38. Infrared Spectrum from 500 - 250 cm⁻¹ of Hostaflon C2 (Polychlorotrifluoroethylene)
Recorced as a film approximately 0.04 mm in thickness (lower curve: linear absorbance; total ordinate: 1)
Figure 39. Infrared Spectrum from 800 - 300 cm⁻¹ of Alkydal BG (Phthalic Acid Polyester; Oil-free) Recorded as a Film
Figure 40. - Infrared Spectrum from 725 - 250 cm$^{-1}$ of diallyl pthalate (prepolymer) recorded as a film from a chloroform solution.
Figure 41. - Infrared Spectrum from 725 - 250 cm\(^{-1}\) of an Alkyd Resin, 42% Coconut Oil. (Algyaral 659 S)

Recorded as a film
Figure 42. - Infrared Spectrum from 700 - 250 cm\(^{-1}\) of Linseed Oil Alkyd Resin (Jaegalyd TAP).
Recorded as a film.
Figure 44. - Infrared Spectrum from 700 - 300 cm\(^{-1}\) of Alkyd Resin with 80% Tall Oil (Tall Oil Alkyd L 1765) Recorded as a film
Figure 45. - Infrared Spectrum from 700 - 250 cm$^{-1}$ of Epoxy-Modified Dehydrated Castor Oil. Recorded as a film.
Figure 46. - Infrared Spectrum from 800 - 300 cm$^{-1}$ of Isophthalic Alkyd Resin with Soybean Oil (Jasgyl) Recorded as a melted film
Figure 47. - Infrared Spectrum from 750 - 250 cm⁻¹ of Hostaphan (Ethylene Glycol-Terephthalic Acid, Polyester)

Recorded as films 3.02 mm and 0.04 mm in path length. The band at 666 cm⁻¹ attributed to atmospheric absorption.
Figure 48. - Infrared Spectrum from 800 - 300 cm⁻¹ of Wire Enamel on Base of Terephthalic Acid Polyester recorded as a film.
Figure 49. - Infrared Spectrum from 700 - 300 cm\(^{-1}\) of Alkydal V 656 (Stryrenated Alkyd Resin) recorded as a melted film approximately 0.11 mm in thickness.
Figure 50. - Infrared spectrum from 800 to 150 cm\(^{-1}\) of Vinyltoluene-Modified Vegetable Oil (pellet in KBr 80-60)

Recorded as a film
Figure 51. - Infrared Spectrum from 200 - 300 cm$^{-1}$ of Roskydal T20 (Unsaturated Polyester Resin) Recorded as a melted film.
Figure 52. - Infrared Spectrum from 700 - 300 cm^{-1} of Roskydal 550 (Unsaturated Polyester Resin)
Recorded as a melted film
Figure 53. Infrared Spectrum from 800 - 450 cm⁻¹ of Makrofol (Polycarbonate on Base of Bisphenol A)

Recorded as a film, 0.043 cm in thickness.
Figure 54. - Infrared Spectrum from 725 - 275 cm$^{-1}$ of Rosin (Abietic Acid)
Recorded as a film, prepared from chloroform solution
Figure 55. - Infrared Spectrum from 200 - 250 cm$^{-1}$ of Rosin Glyceryl Ester (Gamesso G)
Recorded as a film, prepared from benzene solution.
Figure 56. - Infrared Spectrum from 700 - 250 cm$^{-1}$ of Corepal 120 (Talcinate Resin)
Recorded as a film, prepared from chloroform solution
Figure 57. - Infrared Spectrum from 700 - 250 \text{ cm}^{-1} \text{ of Guaiac Resin (a Mixture of 70\% Guaiaconic Acid and 30\% Other Acid and Neutral Compounds)}

Recorded as a film, prepared from chloroform solution. The band at 665 \text{ cm}^{-1} is probably due to chloroform.
Figure 58. - Infrared Spectrum from 700 - 230 cm-1 of Rosin-Modified Phenolic Resin (Jasrolyn)
Recorded as a film, prepared from n-butanol
Figure 59. - Infra-red Spectrum from 800 - 300 cm\(^{-1}\) of Polyvinyl Acetate
Recorded as a film, 0.20 mm in thickness, prepared from an isopropanol-water mixture (9:1)
Figure 60. - Infrared Spectrum from 714 to 406 cm⁻¹ of Polycrylic Acid
Recorded as a film, prepared from a water solution
Figure 61. Infrared Spectrum from 300 to 300 cm$^{-1}$ of Luvicol 30 (Sodium Salt of Polysylic Acid)
Recorded as a KBr disk
Figure 62: Infrared Spectrum from 800 to 300 cm\(^{-1}\) of Polymethylacrylate recorded as a pressed film, 0.17 mm in thickness.
Figure 63. - Infrared Spectrum from 200 - 450 cm⁻¹ of Hycar 4021 (Copolymer of Ethyl Acrylate with 4% Vinyl Chloromethyl Ether)

Recorded as a film approximately 0.085 mm in thickness, prepared from a chloroform solution.
Figure 64. Infrared Spectrum from 714 - 286 cm$^{-1}$ of Polybutyl Acrylate
Recorded as a film from solution
Figure 65. - Infrared Spectrum from 700 - 250 cm$^{-1}$ of Polymethacrylic Acid recorded as a film, prepared from a dioxane solution. The band at 665 cm$^{-1}$ is due to atmospheric absorption.
Figure 69. - Infrared Spectrum from 300 to 250 cm\(^{-1}\) of Isotactic Polymethyl Methacrylate
recorded as a film, prepared from a chloroform solution.
The band at 609 cm\(^{-1}\) is not real.
Figure 41. - Infrared Spectrum from 500 - 250 cm⁻¹ of Syndiotactic Polymethyl Methacrylate
Recorded as a film, prepared from chloroform solution.
The band at 665 cm⁻¹ is partly due to chloroform, and the one at 699 cm⁻¹ is not real.
Figure 68. - Infrared Spectrum from 700 - 250 cm\(^{-1}\) of Atactic Polymethyl Methacrylate
Recorded as a film from chloroform solution
The band at 663 cm\(^{-1}\) is partly due to chloroform
Figure 69. - Infrared spectrum from 250 to 450 cm⁻¹ of polyethyl methacrylate recorded as a film approximately 0.06 mm in thickness, prepared from a chloroform solution.
Figure 70 - Infrared Spectrum from 725 - 250 cm$^{-1}$ of Poly-n-Butyl Methacrylate

Recorded as a film approximately 0.12 mm in thickness, prepared from a chloroform solution.
Figure 71. - Infrared Spectrum from 725 - 250 cm⁻¹ of Polyisobutyl methacrylate
Recorded as a film, prepared from a chloroform solution.
Figure 72. Infrared Spectrum from 750 – 250 cm$^{-1}$ of Regenerated Cellulose (Cellophane) Recorded as a film 0.03 um in thickness
Figure 73. - Infrared Spectrum from 750 - 250 cm\(^{-1}\) of Dow Methocel (Methyl Cellulose) Recorded as a film approximately 0.03 mm in thickness, prepared from a water solution.
Figure 7a. - Infrared Spectrum from 750 - 300 cm⁻¹ of Dow Ethocel (Ethyl Cellulose)
Recorded as a film 0.135 mm in thickness
Figure 75. - Infrared Spectrum from 750 - 350 cm⁻¹ of Cellulose Acetate (Low Acetyl Content) Recorded as a film approximately 0.07 mm in thickness, prepared from a methylene chloride-methanol solution (9:1).
Figure 76. - Infrared Spectrum from 725 - 250 cm$^{-1}$ of Kodapac 4 (Cellulose Triacetate)
Recorded as a film 0.025 mm in thickness
Figure 77. - Infrared spectrum from 775 to 250 cm$^{-1}$ of Kodapac 2
Recorded as a film 0.028 mm in thickness
Figure 78. - Infrared Spectrum from 700 - 450 cm⁻¹ of Cellulose Tripropionate
Reckoned as a film, prepared from benzene solution
Figure 80. - Infrared Spectrum from 700 – 250 cm⁻¹ of Delrin (Polyoxymethylene)
Recorded as a BR disk
Figure 81. - Infrared Spectrum from 750 - 250 cm\(^{-1}\) of Polyethylene Glycol (Liquid) Recorded as a film
Figure 22. - Infrared Spectrum from 2000 to 300 cm$^{-1}$ of Polyethylene Oxide (Crystalline) Recorded as a Null Method
Figure 12. - Infrared spectrum from 900 - 300 cm\(^{-1}\) of polyoxypropylene glycol (liquid) recorded in a 1.194 mm CaF\(_2\) cell.
Figure 84. - Infrared Spectrum from 700 - 250 cm$^{-1}$ of KUNSTHARZ FX 70 (Acetaldehyde Resin) Recorded as a film, prepared from a chloroform solution.
Figure 05. Infrared spectrum from 700 - 450 cm⁻¹ of Kunstharp AP (Acetophenone-Formaldehyde resin).

Recorded as a film, prepared from chloroform solution.
Figure 85. - Infrared Spectrum from 1000 - 2500 cm\(^{-1}\) of Polyvinyl methyl ether (atactic, amorphous) recorded as a film from solution.
Figure 87. - Infrared Spectrum from 200 - 2500 cm⁻¹ of Opanol C (Polyvinyl Isobutyl Ether)
Recorded as a film approximately 5.13 cm in thickness.
Figure 18. - Infrared Spectrum from 750 - 300 cm\(^{-1}\) of Mowital F40 (Polyvinyl Formal) recorded as a film approximately 0.1 mm in thickness, prepared from chloroform solution.
Figure 39. - Infrared Spectrum from 750 - 450 cm⁻¹ of Mowital B 30 H (Polyvinyl Butyral) recorded as a film 0.07 mm in thickness, prepared from a chloroform solution.
Figure 90. - Infrared Spectrum from 800 - 250 cm\(^{-1}\) of Epoxin 162 (Aliphatic Epoxy Resin) Recorded as a film
Figure 91. - Infrared Spectrum from 750 - 250 cm\(^{-1}\) of Paraplex G-60 (Epoxidized Soy-Bean Oil) Recorded in a 0.1 mm CsBr cell
Figure 92. - Infrared Spectrum from 700 - 300 cm$^{-1}$ of Epikote 228 (Low Molecular Weight Epoxy Resin on Base of Bisphenol A) recorded as a film.
Figure 13. - Infrared Spectrum from 200 - 250 cm$^{-1}$ of Epikote 1007 (High Molecular Weight Epoxy Resin on Base of Bisphenol A)

Recorded as a film, prepared from a chloroform solution
Figure 6b. - Infrared Spectra from 750 - 2500 cm\(^{-1}\) of Cumar Resin P 25 (Probably Inside-Coumarone Resin) Recorded as a Film.
Figure 93. - Infrared Spectrum from 725 - 500 cm⁻¹ of Alnovol 429 K (Cresol Novolac)
Recorded as a film, prepared from isopropanol solution.
Figure 96. - Infrared Spectrum from 650 - 250 cm\(^{-1}\) of Resorcinol-Formaldehyde Novolac Recorded as a film, prepared from isopropanol solution.
Figure 97. - Infrared Spectrum from 700 - 300 cm⁻¹ of Limophen B 60 (Phenol Resole)
Recorded as a film from solution
Figure 98. - Infrared Spectrum from 700 - 300 cm$^{-1}$ of Durophen 241 V (Plasticized Phenol Resole).

Recorded as a film from solution.
Figure 99. - Infrared Spectrum from 800 - 250 cm\(^{-1}\) of Resorcinol-Formaldehyde Resin (Alkaline Condensed)

Recorded as a film, prepared from isopropanol solution.
Figure 100. Infra-red Spectrum from 800 - 250 cm$^{-1}$ of Phenol-Resorcinol Formaldehyde Resin (Alkaline Condensed)

Recorded as a film, prepared from isopropanol solution.
Figure 104. Infrared Spectrum from 750 - 250 cm⁻¹ of Polyamide 6, Polycaprolactam (Orethane 87).

Recorded as a film 0.03 mm in thickness, prepared from a formic acid solution.
Figure 103. - Infrared Spectrum from 700 - 300 cm⁻¹ of Polyamide 6 (Polyepsilonlactam)
Recorded as a film, prepared from tereph acid solution
Figure 104. - Infrared Spectrum from 750 - 250 cm⁻¹ of Rilsan (Polyamid 11 or Polyamideclactam) recorded as a film approximately 0.3 mm in thickness, prepared from a formic acid solution.
Figure 105. - Infrared Spectrum from 750 - 330 cm⁻¹ of Polyamide 6,6

Recorded as a film approximately 0.04 mm in thickness, prepared from a formic acid solution.
Figure 106. - Infrared Spectrum from 750 - 250 cm⁻¹ of Polyamide 6,10
Recorded as films approximately 0.05 mm and 0.1 mm
in thickness, prepared from a formic acid solution
Figure 107. - Infrared Spectrum from 800 - 300 cm\(^{-1}\) of Ultrad 6a (Copolyamide 6:6,6)

Recorded as a film approximately 0.03 mm in thickness, prepared from a formic acid solution.
Figure 109. - Infrared Spectrum from 750 - 250 cm$^{-1}$ of Versamid 125 (Polyamide from Di- and Trimerized Fatty Acids and a Diamine)

Recorded as a film
Figure 110. - Infrared spectrum from 700 - 250 cm⁻¹ of Butylated Urea-Formaldehyde Resin recorded as a film.
Figure 111. - Infrared Spectrum from 700 to 250 cm$^{-1}$ of Maprenal TTX (melamine-formaldehyde resin) recorded as a film.
Figure 112. - Infrared Spectrum from 400 - 250 cm\(^{-1}\) of Cibamin MO-75 (Oxy-Modified Melamine Resin).

Recorded as a film.
Figure 11. - Infrared Spectrum from 750 - 300 cm⁻¹ of Maprenal HM (Benzoguanamine-Aldehyde Resin)

Recorded as a film
Figure 114. - Infrared Spectrum from 725 - 250 cm\(^{-1}\) of Santolite X-H-P (Aromatic Sulfonamide-Formaldehyde Resin)

Recorded as a film from a chloroform solution.
Figure 115. - Infrared Spectrum from 700 - 250 cm⁻¹ of Durethan U₈ (polyurethane from hexamethylene-diol and butanediol-1,4).

Recorded as a film, prepared from a formic acid solution.
Figure 117. - Infrared Spectrum from 750 - 250 cm⁻¹ of Adiprene L-100 (Polyether-Alcohol Reacted with Toluene Diisocyanate)
Recorded as a film
Figure 119. - Infrared Spectrum from 700 - 250 cm\(^{-1}\) of Desmodur AP Stabil (Masked Isocyanate from Toluene Diisocyanate and Phenol).

Recorded as a film, prepared from a chloroform solution.
The band at 645 cm\(^{-1}\) is due to chloroform.
Figure 120. - Infrared Spectrum from 750 - 250 cm$^{-1}$ of Hyplene DMM (4,4'-Naphthylene Di-o-xylylsocyanate) Recorded as a film
Figure 121. - Infrared Spectrum from 700 - 325 cm⁻¹ of a Copolymer of Acrylonitrile with 6% Vinyl Acetate

Recorded as a Nujol mull
Figure 123. - Infrared Spectrum from 750 - 250 cm\(^{-1}\) of Dow Corning Silicone (Polydimethylsiloxane) Recorded as a film 0.006 mm in thickness
Figure 124. - Infrared Spectrum from 700 - 300 cm$^{-1}$ of Silicone 704 (Poly(methylphenylsiloxane))
Recorded as a film
Figure 125. - Infrared Spectrum from 800 - 300 cm\(^{-1}\) of Bitumen HVB (Higher Aliphatic Hydrocarbons) Recorded as a film
Figure 126. - Infrared Spectrum from 700 - 250 cm$^{-1}$ of Montan Wax (Mixtures of High Molecular Weight Fatty Acids and Esters).

Recorded as a film 0.6 mm in thickness.
Figure 127. Infrared Spectrum from 700 - 3000 cm⁻¹ of Beeswax (mixture of high molecular weight lipids and fatty acids) recorded as a film.
Figure 128. - Infrared Spectrum from 700 - 250 cm$^{-1}$ of Carnauba Wax (Mixture of High Molecular Weight Aliphatic Hydrocarbons, Alcohols and Esters) Recorded as a film approximately 0.30 μm in thickness
Figure 129. - Infrared Spectrum from 750 - 250 cm⁻¹ of Candelilla Wax (Mixture of High Molecular Weight Hydrocarbons and Ester-Type and Acid Resins)

Recorded as a film approximately 1.5 mm in thickness.
Figure 130. - Infrared Spectrum from 800 - 250 cm⁻¹ of Di-2-Ethylhexyl Adipate
Recorded using a 0.21 mm CsBr cell.
Figure 132. - Infrared Spectrum from 750 - 300 cm\(^{-1}\) of Dimethyl Phthalate
Recorded using a 0.1 mm CsBr cell
Figure 133. - Infrared Spectrum from 750 \(^{-1}\) to 250 \(^{-1}\) cm of Diethyl Phthalate
Recorded using a 0.1 mm liquid cell
Figure 15A. - Infrared Spectrum of 7.5 × 10^4 cm⁻¹ of n-Butyl Phthalate
Recorded using a 0.4 mm path cell.
Figure 135. - Infrared Spectrum from 720 - 250 cm\(^{-1}\) of Diisobutyl Phthalate

Recorded using a J.I. cu CsBr cell
Figure 136. - Infrared Spectrum from 745 - 250 cm$^{-1}$ of Diamyl Phthalate

Recorded using a 0.1 mm CsBr cell
Figure 137. - Infrared Spectrum from 750 - 300 cm⁻¹ of Di-n-Octyl Phthalate
Recorded using a 0.1 mm CsBr cell
Figure 139. - Infrared Spectrum from 850 - 350 cm$^{-1}$ of DI-2-Ethylhexyl Phthalate

Recorded using a 0.1 mm CsBr cell
Figure 139. - Infrared Spectrum from 675 - 250 cm\(^{-1}\) of Di-2-Ethyl Isohexyl Phthalate

Recorded using a 0.21 mm CsBr cell
Figure 14.1. - Infrared Spectrum from 675 - 250 cm⁻¹ of Dinonyl Phthalate
Recorded using a 0.01 mm cu cell
Figure 141. - Infrared Spectrum (from 750 - 300 cm⁻¹) of Diisodecyl Phthalate (Santizier 214)
Recorded using a 0.1 mm CsBr cell
Figure 162. - Infrared Spectrum from 750 - 275 cm\(^{-1}\) of Santicizer 160 (Butyl Benzyl Phthlate) recorded using a 0.1 cm CsBr cell.
Figure 143. Infrared Spectrum from 675 - 250 cm\(^{-1}\) of Diphenyl Phthalate recorded as a film.
Figure 144. - Infrared Spectrum from 725 - 250 cm⁻¹ of Dimethylglycol Phthalate
Recorded using a 0.1 mm CsBr cell
Figure 145. - Infrared Spectrum from 750 – 300 cm\(^{-1}\) of Santicizer 17 (Naphthhydralin Ethylglycollate).

Recorded using a 0.1 mm CrBr cell.
Figure 146. - Infrared Spectrum from 750 - 250 cm\(^{-1}\) of Santicizer E 15 (Ethylphthalyl Ethylglycollate)

Recorded using a 0.1 mm CsBr cell.
Figure 147. - Infrared Spectrum from 750 - 250 cm$^{-1}$ of Santicizer B 16 (Butylphthalyl Butylylcollate).

Recorded using a 0.1 mm CsBr cell.
Figure 168. - Infrared Spectrum from 750 - 250 cm\(^{-1}\) of Tri-n-Butyl Phosphate

Recorded using a 0.1 mm CsBr cell and as a capillary film.
Figure 130. - Infrared Spectrum from 700 - 250 cm\(^{-1}\) of Celluflex CEF (Ir
is(5-Chloroethyl)Phosphate)
Recorded using a 0.1 mm CsBr cell and as a capillary film
Figure 151. - Infrared Spectrum (from 750 - 250 cm\(^{-1}\)) of Santicizer 141 (2-Ethylhexyl Diphenyl Phosphate)

Recorded using a 0.1 mm CsBr cell and as a capillary film
Figure 15a. Infrared spectrum from 250 to 25 cm⁻¹ of Triphenyl Phosphate recorded as a film.
Figure 153. Infrared spectrum from 250 – 1500 cm⁻¹ of Santicizer 140 (Cresyl Diphenyl Phosphate) recorded using a 0.1 mm CBr cell and a capillary film.
Figure 154. Infrared Spectrum from 750 - 250 cm⁻¹ of o-Tricresyl Phosphate
Recorded using a 0.1 mm CsBr cell and as a capillary film.
Figure 155. - Infrared Spectrum from 750 - 250 cm\(^{-1}\) of tricresyl Phosphate (Technical Grade, Mixture of Isomers)

Recorded using a 0.1 mm CsBr cell and as a capillary film
Figure 156. - Infrared Spectrum from 750 - 250 cm$^{-1}$ of Trixylenyl Phosphate
Recorded using a 0.1 mm CsBr cell and as a capillary film
Figure 157. - Infrared Spectrum from 700 - 250 cm$^{-1}$ of Triphenyl Phosphite
Recorded using a 0.1 mm CsBr cell
Figure 138. - Infrared Spectrum from 700 - 250 cm$^{-1}$ of Isoprene

Recorded using 0.1 and 0.2% NaCl cells
Figure 160. - Infrared spectrum from 700 - 350 cm⁻¹ of styrene recorded using a 0.020 cm Cell.
Figure 161. - Infrared Spectrum from 700 - 250 cm⁻¹ of \(\alpha \)-Methyl Styrene
Recorded using a 0.1 mm CsBr cell
Figure 162. Infrared Spectrum from 700 - 350 cm⁻¹ of Vinyl Toluene (Technical Grade) recorded using a 0.092 mm CaBr₂ cell.
Figure 163. - Infrared Spectrum from 750 - 300 cm$^{-1}$ of Vinyl Acetate
Recorded using a 0.1 mm CsBr cell
Figure 10A: Infrared Spectrum from 750 – 250 cm$^{-1}$ of Diallyl Maleate recorded using a 0.21 cm2 cell.
Figure 166. - Infrared Spectrum from 700 - 300 cm⁻¹ of Diallyl Isophthalate
Recorded using a 0.1 mm CsBr cell
Figure 167. - Infrared Spectrum from 700 - 250 cm$^{-1}$ of Methyl Acrylate
Recorded using a 0.1 mm CsBr cell and as a capillary film
Figure 168. - Infrared Spectrum from 700 - 250 cm$^{-1}$ of Ethyl Acrylate
recorded using 0.1 and 0.02 mm CuBr cells
Figure 169. - Infrared Spectrum (from 750 - 300) cm$^{-1}$ of n-Butyl Acrylate
Recorded using a 0.1 mm CsBr cell
Figure 170. - Infrared Spectrum from 750 - 250 cm\(^{-1}\) of Methyl Methacrylate

Recorded using a 0.032 mm CsBr cell
Figure 171. - Infrared Spectrum from 700 - 250 cm⁻¹ of Ethyl Methacrylate
Recorded using 0.1 and 0.02 mm CaF₂ cells
Figure 171. - Infrared Spectrum from 200 - 300 cm⁻¹ of n-Butyl Methacrylate recorded using a 0.1 mm CsBr cell.
Figure 175. - Infrared Spectrum from 700 - 400 cm⁻¹ of Acrylonitrile
Recorded using a 0.1 mm CsBr cell
Figure 175. - Infrared Spectrum from 700 to 325 cm⁻¹ of Cyclohexane
Recorded using 1.1, 0.21 and 0.092 mm CsBr cells
Figure 176. - Infrared Spectrum from 800 - 300 cm⁻¹ of Paraffin Oil (Nujol) recorded using 1.1 and 0.21 mm CaBr₂ cells
Figure 177. - Infrared Spectrum from 700 - 250 cm⁻¹ of Methylene Chloride
Recorded using 1.1, 0.21 and 0.092 mm CaF₂ cells
Figure 178. - Infrared Spectrum from 700 - 300 cm$^{-1}$ of Chloroform
Recorded using 1.1 and 0.092 mm CsBr cells
Figure 179. - Infrared Spectrum from 700 - 300 cm⁻¹ of Deuterated Chloroform
Recorded using 1.1 and 0.092 mm CsBr cells
Figure 100. - Infrared Spectrum from 700 - 300 cm⁻¹ of Carbon Tetrachloride
Recorded using 1.1 and 0.092 mm CsBr cells
Figure 181. - Infrared Spectrum from 800 - 3.00 cm$^{-1}$ of n-Butanol
Recorded using a 0.092 mm CaF$_2$ cell
Figure 102 - Infrared Spectrum from 700 - 300 cm⁻¹ of Methyl Acetate recorded using a 0.092 mm cell.
Figure 183. - Infrared Spectrum from 800 - 300 cm$^{-1}$ of Ethyl Acetate
Recorded using a 0.092 mm CaF$_2$ cell
Figure 184. Infrared Spectrum from 700 - 250 cm⁻¹ of n-Butyl Acetate
Recorded using a 0.092 mm CsBr cell
Figure 185. - Infrared Spectrum from 675 - 300 cm\(^{-1}\) of 1,4-Dioxane
Recorded using 1.1, 0.21, 0.092 mm CsBr cells
Figure. 186. - Infrared spectrum from 700 - 300 cm\(^{-1}\) of Carbon Disulfide, recorded using 1.1 and 0.092 mm Csl cells.

Approved for Public Release
Figure 107. Infrared Spectrum from 700 - 300 cm$^{-1}$ of Acetone
Recorded using 0.21 and 0.092 mm CsBr cells.
Figure 189. - Infrared Spectrum from 700 - 300 cm$^{-1}$ of Dimethylformamide
Recorded using a 0.092 mm CsBr cell.
Figure 190. - Infrared Spectrum from 700 - 300 cm\(^{-1}\) of Benzene

Recorded using 1.1, 0.21 and 0.092 mm CaF\(_2\) cells
Figure 191. Infrared Spectrum from 300 - 275 cm\(^{-1}\) of Xylene (Mixture of Isomers)
Recorded using a 0.092 mm CsBr cell
Figure 194. - Infrared Spectrum from 750 - 300 cm⁻¹ of pyridine
Recorded using a 0.094 mm Nujol cell
APPENDIX B

PICTORIAL SPECTRAL CHARTS OF POLYMERS, RESINS, AND RELATED MATERIALS.
<table>
<thead>
<tr>
<th>POLYHYDROCARBONS, ALIPHATIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLYETHYLENE, linear</td>
</tr>
<tr>
<td>POLYETHYLENE, branched</td>
</tr>
<tr>
<td>POLYPROPYLENE, atactic, all</td>
</tr>
<tr>
<td>POLYPROPYLENE, atactic, rubber-like</td>
</tr>
<tr>
<td>POLYPROPYLENE, isotactic</td>
</tr>
<tr>
<td>POLYBUTENE-1, isotactic</td>
</tr>
<tr>
<td>POLYISOBUTYLENE</td>
</tr>
<tr>
<td>POLY(4-METHYL PENTENE-1), isotactic</td>
</tr>
<tr>
<td>4-cis-POLYBUTADIENE</td>
</tr>
<tr>
<td>1, 4-trans-POLYBUTADIENE</td>
</tr>
<tr>
<td>POLYBUTADIENE, atactic, liquid</td>
</tr>
<tr>
<td>1, 4-cis-POLYISOPRENE</td>
</tr>
<tr>
<td>1, 6-trans-POLYISOPRENE</td>
</tr>
<tr>
<td>PARAFFIN OIL</td>
</tr>
</tbody>
</table>

Chart 1. - Absorption Frequencies of Aliphatic Polyhydrocarbons
Chart 11. - Absorption Frequencies of Aromatic Polyhydrocarbons
Chart III. - Absorption Frequencies of Halogenated Polyhydrocarbons
<table>
<thead>
<tr>
<th>ALKYDS and other RESINOUS ESTERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHTHALIC ACID POLYESTER, oil-free</td>
</tr>
<tr>
<td>Diallyl phthalate prepolymer</td>
</tr>
<tr>
<td>Tung oil alkyd</td>
</tr>
<tr>
<td>Linseed oil alkyd, thisotropic</td>
</tr>
<tr>
<td>Soy bean oil alkyd</td>
</tr>
<tr>
<td>Coconut oil alkyd</td>
</tr>
<tr>
<td>Styrenated alkyd</td>
</tr>
<tr>
<td>Vinyl toluene-modified alkyd</td>
</tr>
<tr>
<td>Unsaturated polyester</td>
</tr>
<tr>
<td>(Diphthalic alkyd</td>
</tr>
<tr>
<td>Poly(glycol terephtalate) cryst.</td>
</tr>
<tr>
<td>Terephthalic coating alkyd</td>
</tr>
<tr>
<td>Poly(bisphenololpropane carbonate)</td>
</tr>
<tr>
<td>Rosin glycerol ester</td>
</tr>
<tr>
<td>Rosin-maleic anhydride adduct</td>
</tr>
<tr>
<td>Esterified</td>
</tr>
</tbody>
</table>

Chart IV - Absorption Frequencies of Alkyds and Other Resinous Esters
Chart V. - Absorption Frequencies of Acrylics and Polyvinyl Esters
Chart VI. - Absorption Frequencies of Cellulose Derivatives
Chart VII. - Absorption Frequencies of Polyethers and Ether Resins
<table>
<thead>
<tr>
<th>POLYAMIDS and AMINO RESINS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLYAMID-6, cryst.</td>
</tr>
<tr>
<td>POLYAMID-6, biaxial orient.</td>
</tr>
<tr>
<td>POLYAMID-8</td>
</tr>
<tr>
<td>POLYAMID-11</td>
</tr>
<tr>
<td>POLYAMID-5, 6</td>
</tr>
<tr>
<td>POLYAMID-6, 10</td>
</tr>
<tr>
<td>CO-POLYAMID 5+ 6, 6</td>
</tr>
<tr>
<td>ULTRAMID-1 C (ter-polyamid)</td>
</tr>
<tr>
<td>VERSAMID-125 (fatty polyamide)</td>
</tr>
<tr>
<td>UREA-FORMALDEHYDE-RESIN</td>
</tr>
<tr>
<td>MEALAMINE-FORMALDEHYDE-RESIN</td>
</tr>
<tr>
<td>MEALAMINE RESIN, oil-modified</td>
</tr>
<tr>
<td>MEALAMINE-UREA RESIN</td>
</tr>
<tr>
<td>BENZOGUANAMINE RESIN</td>
</tr>
</tbody>
</table>

Chart VIII. - Absorption Frequencies of Polymers and Amino Resins
Chart IX. - Absorption Frequencies of Plasticizers: Phthalates
<table>
<thead>
<tr>
<th>Chemical</th>
<th>Chart X. - Absorption Frequencies of Plasticizers: Phosphates and Phosphites</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRI-n-BUTYL PHOSPHATE</td>
<td></td>
</tr>
<tr>
<td>TRI-I-BUTYL PHOSPHATE</td>
<td></td>
</tr>
<tr>
<td>TRIS (β-CHLOROETHYL) PHOSPHATE</td>
<td></td>
</tr>
<tr>
<td>2-ETHYLNEXYL DIPHENYL PHOSPHATE</td>
<td></td>
</tr>
<tr>
<td>TRIPHENYL PHOSPHATE, liquid</td>
<td></td>
</tr>
<tr>
<td>CRESYL DIPHENYL PHOSPHATE</td>
<td></td>
</tr>
<tr>
<td>Θ-TRICRESYL PHOSPHATE</td>
<td></td>
</tr>
<tr>
<td>TRICRESYL PHOSPHATE, tech. mixt.</td>
<td></td>
</tr>
<tr>
<td>TRIXYLENYL PHOSPHATE</td>
<td></td>
</tr>
<tr>
<td>TRIPHENYL PHOSPHITE</td>
<td></td>
</tr>
</tbody>
</table>
Chart XI. - Absorption Frequencies of Monomers