UNSTEADY AERODYNAMICS FOR ADVANCED CONFIGURATIONS

PART VII — VELOCITY POTENTIALS IN NON-UNIFORM TRANSONIC FLOW OVER A THIN WING

L. V. ANDREW and T. E. STENTON
North American Rockwell Corporation

This document has been approved for public release and sale; its distribution is unlimited.
FOREWORD

This report covers a portion of the research conducted by the Los Angeles Division of North American Rockwell Corporation, Los Angeles, California, for the Aerospace Dynamics Branch, Vehicle Dynamics Division, Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio, under Contract No. AF33(615)-2894.

The work was performed to advance the state-of-the-art of flutter prediction for flight vehicles as part of the Air Force Systems Command exploratory development program. The research was conducted under Project No. 1370 "Dynamic Problems in Flight Vehicles", Task No. 1370E3 "Prediction and Prevention of Aero-thermoplastic Problems". Wessels: James J. Olsen and Samuel J. Pollock of the Aerospace Dynamics Branch were Project Engineers.

Mr. W. Hoge was the Program Manager for North American Rockwell. Mr. I. V. Andrew and Mr. T. E. Stenstrom were Principal Investigators. The basic approach was outlined by Dr. M. T. Landahl of the Massachusetts Institute of Technology. The calculus of variations approach was suggested by Mr. James Olsen.

The contractor’s designation of this report is NA-60-694.

Manuscript released by the Authors in October 1967 for publication as an AFFDL Technical Report.

This technical report has been reviewed and is approved.

WALTER J. MERRICK
Asst. for Research & Technology
Vehicle Dynamics Division

Approved for Public Release
ABSTRACT

Two methods have been outlined in detail, and one of them has been mechanised, for calculating acoustic ray paths emanating from any point in a non-uniform transonic flow field surrounding a wing. It gives the ray path, and the time, for the minimum time of travel from the acoustic source point to the field point. The resulting velocity potential is also computed.

It was necessary to establish an accurate representation of the flow characteristics in the field surrounding the wing. Some ray lines travel over the planform and into the surrounding flow field. It was established that once off the planform they do not return.

Available methods predict phase lags based on the assumption that acoustic rays travel in straight lines. The results of this study show this to be a very poor approximation at transonic speeds. Therefore, it is recommended that the method presented in this report be fully developed for the purpose of calculating generalized forces on wings in harmonic motion at transonic speeds. A computer program that would predict these phase lags with reasonable accuracy, and the corresponding flutter characteristics and unsteady aerodynamic loads on a wing responding to externally applied forces, such as gusts, would fill an important gap in the available technology.
CONTENTS

1. INTRODUCTION ... 1
2. POTENTIAL OF A UNIT SOURCE 2
 Difference Equation Method 3
 Non-Linear Differential Equation Method 7
3. THE NON-UNIFORM FLOW FIELD 13
4. DESCRIPTION OF THE COMPUTER PROGRAM 19
5. DISCUSSION OF RESULTS 23
6. CONCLUSIONS AND RECOMMENDATIONS 32
7. REFERENCES ... 33
 APPENDIX I. Program Listings 34
 APPENDIX II. Sample Input and Output 34
 APPENDIX III. Application to the Boundary
 Value Problem 61
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Velocity Components of a Sonic Ray Line In A Moving Airstream</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Stability of Ray Angles When The Gradient of Local Flow Speed Exceeds the Gradient of Local Speed of Sound</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Local Flow Distribution on a 65° Δ at a Transonic Speed</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>Sonic Speed Distribution on a 65° Δ at a Transonic Speed</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>A Thin Wing In Rectilinear Flight</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>Ray Paths for a Source or Doublet at (0.18c, 0.0)</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>Ray Paths for a Source or Doublet at (0.28c, 0.0)</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>Ray Paths for a Source or Doublet at (0.06c, 0.0)</td>
<td>26</td>
</tr>
<tr>
<td>9</td>
<td>Ray Paths for a Source or Doublet at (0.42c, 0.0)</td>
<td>27</td>
</tr>
<tr>
<td>10</td>
<td>Ray Paths for a Source or Doublet at (0.24c, 0.04c)</td>
<td>28</td>
</tr>
<tr>
<td>11</td>
<td>Ray Paths for a Source or Doublet at (0.34c, 0.14c)</td>
<td>29</td>
</tr>
<tr>
<td>12</td>
<td>Ray Paths for a Source or Doublet at (0.54c, 0.26c)</td>
<td>30</td>
</tr>
<tr>
<td>13</td>
<td>Ray Paths for a Source or Doublet at (0.57c, 0.29c)</td>
<td>31</td>
</tr>
</tbody>
</table>
SOURCES

e chord
C speed of sound
s time of travel of an acoustic signal
M Mach number
r Slope in the y-direction, \(\partial z/\partial y \)
\(\Delta R \) increment in radius vector
s Distance along a ray path, span
T Time
U Free-stream velocity
V Velocity
x, y, z Location of a field point
x', y', z' Location of a source or obstacle point
\(x_0, y_0, z_0 \) Location of a source or obstacle point
\(z/\delta_z, y/\delta_y \)
\(\mathbf{X}, \mathbf{Y} \) Linear transformation of coordinates X, Y
\(\mathbf{X}', \mathbf{Y}', \mathbf{Z}' \) Unit vectors along \(x', y', z' \) axes
\(\mathbf{R} \) Radius vector
\(\nabla \) Vector gradient operator, \(\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \)
\(\delta \) \(\sqrt{1-M^2} \), \(\sqrt{x^2 + y^2} \)
\(\phi \) Velocity potential
\(\Lambda \) Ray angle
\(\tau \) Thickness ratio

Subscripts
a Advancing
l Local, lower

vi
SYMBOLES (Continued)

r Reeding
w Upper
x, y Partial derivatives with respect to x, y
c Sonic line
∞ Infinity

Superscripts
* Derivative with respect to time
' Derivative with respect to the independent variable
INTRODUCTION

When an airfoil travels through the air at speeds near the speed of sound, the local speed of flow varies from subsonic near the forward edges to supersonic near the trailing edges. These wide variations of speed from that of the free-stream characterize the non-uniform transonic flow. This non-uniformity of the flow field must be accounted for in accurate calculations of unsteady pressures and forces, particularly their phase lags.

In order to determine an unsteady transonic flow field one requires solutions for singularities immersed in a non-uniform steady flow, (Reference 1). Source solutions for a mean flow that varied in the x-direction only were given in the high-frequency limit by Landahl (Reference 2). Rodditch (Reference 3) presented a "box" solution, based on pulsating doublets, which assumes a uniform mean flow at Mach number 1.0. No exact solutions for the case of a mean flow with arbitrary spatial variations have been found, thus far, but Landahl proposed the basic form of a solution which removes most of the limitations and restrictions of these approximate solutions. The method focuses attention on the time of transmission of an acoustic signal from a pulsating sending source to a distant receiving point. The signal travels through a nearly sonic flow field where the Mach number varies in a prescribed manner.

This report contains a difference equation approach, and differential equation approach to computing the paths and the transmission times for acoustic signals. The independent variable in the latter approach is a spatial rather than a time variable. A procedure that could be used to calculate the velocity potentials and generalised forces on an oscillating surface is described.
The basic expressions proposed by Landahl for the velocity potential at the point \((x,y,z)\) due to a pulsating source at \((x_0,y_0,z_0)\) are:

(a) for a source in a locally subsonic flow region

\[
\phi = \frac{-1}{4\pi} \exp \left[\frac{\text{i} \omega t - g(x,y,z,x_0,y_0,z_0)}{R} \right]
\]

where \(R = \sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2} \)

\(N = \) Local Mach Number

\(x_0,y_0,z_0 = \) location of source point

\(g(x,y,z,x_0,y_0,z_0) = \) Time required for a disturbance to travel from \((x_0,y_0,z_0)\) to \((x,y,z)\).

(b) for a source in a locally supersonic flow region

\[
\phi = \frac{-1}{4\pi} \left[\exp[\text{i} \omega (t-g_s)] + \exp[\text{i} \omega (t-g_r)] \right]
\]

where

\(g_s = g_r = g(x,y,z,x_0,y_0,z_0) = \) Time required for the advancing, receding wave to travel from \((x_0,y_0,z_0)\) to \((x,y,z)\).

It is likely that good accuracy may be obtained with the use of the values of \(g_s\) for uniform flow (in the supersonic case, and also for the advancing wave portion in the subsonic case). However, our purpose is to produce a general solution for \(g\) which applies to both the advancing and the receding portions of the wave and compare values with those for uniform flow.

Since the primary interest is in wing flows, we consider that both the source and receiver points lie in the \(x, y\)-plane, so that \(z = z_0 = 0\). Furthermore, we consider that signals do not return to the plane once they leave. The problem is thus simplified to one in two spatial dimensions. Its solution should be applicable to a wide variety of nearly planar lifting surfaces.

Consider a signal emanating from a source at the point \((x_0,y_0)\) on a wing. A second point past which the signal travels is located an incremental distance \((dx, dy)\) away. There are two components of velocity of the signal, a radial component, \(C\), where \(C\) is the local speed of sound and an \(x\)-component, \(U\), where \(U\) is the local speed of flow over the wing. \(\Lambda\) is the angle the radial component makes with the negative extension of the \(x\)-axis. The path of this wavefront point will be referred to as a "ray". The shape of any ray depends on the initial choice of \(\Lambda\) for a given \(\Lambda\), \(dx\) and \(dy\) are components of the first element of this particular ray emanating from \((x_0,y_0)\). The situation depicted is general in that it applies not only at the source, but at any point on the ray path. Thus, the
velocity at any point on the path is a function of three spatial parameters which vary with position, \(U \), \(C \), and \(\lambda \). From the sketch, it is clear that

\[
\begin{align*}
\frac{dx}{dt} &= [U(x, y) - \dot{c}(x, y) \cos \lambda] dt \\
\frac{dy}{dt} &= \dot{c}(x, y) \ dt \sin \lambda
\end{align*}
\]

Equations were developed for two methods of tracing the ray path to establish the magnitude and the phase relationship at field points to a unit source. These methods are: (1) a difference equation method, and (2) a non-linear differential equation method.

Difference Equation Method

In this method, time is the independent variable. Equations (3) are two of the three equations needed to establish the variation of \(x \), \(y \), and \(\lambda \) with time. The third equation is obtained by considering the acceleration of the ray in the non-uniform flow field (see Figure 1).

![Figure 1. Velocity Components of a Sonic Ray Line In A Moving Airstream](image)

In terms of components in the directions of the rotating unit vectors \(\hat{\nu} \) and \(\hat{\upsilon} \):

\[
\begin{align*}
\mathbf{\hat{M}} &= (U \sin \lambda) \hat{\nu} + (c - U \cos \lambda) \hat{\upsilon} \\
\mathbf{\hat{N}} &= (U \sin \lambda + C \hat{\nu}) \hat{\nu} + (\dot{c} - U \cos \lambda) \hat{\upsilon}
\end{align*}
\]

It is necessary to express the angular velocity \(\dot{\lambda} \) in terms of space variables. To do this, consider that at time \(t \) a second ray point is located at \(\mathbf{\hat{M}} = \mathbf{\hat{M}} + \delta \mathbf{\hat{M}} \), where \(\delta \) is small, and its direction of travel is \(\mathbf{\hat{N}} = \mathbf{\hat{N}} + \delta \mathbf{\hat{N}} \). Let the superscripts \((0) \) and \((1) \) denote times \(t_0 \) and \(t_1 \) (i.e., \(t_1 = t_0 + \Delta t \)). Then at time \(t_1 \)
\[R_n^{(i)} = R_n^{(i)} + \dot{R}_n^{(i)} \Delta t \]

and

\[R_n^{(i)} = R_n^{(i)} + \dot{R}_n^{(i)} \Delta t \]

Subtracting the first equation from the second

\[\delta R^{(i)} = \delta R^{(i)} + \delta R^{(i)} \Delta t \]

where

\[\delta R = R_1 - R_1 \]

Recalling that the cross product of two vectors is a vector normal to the plane defined by the two vectors, and has a magnitude equal to the product of the two magnitudes times the sine of the angle between them, then

\[\delta R^{(i)} \times \delta R^{(i)} = \mathbf{\hat{z}} \left(-\delta R^{(i)} \times \delta R^{(i)} \sin \Delta \lambda \right) \]

which has the correct sense. When \(\Delta \lambda \) is small, and when Equation (5) is substituted into the left side of Equation (6), we get

\[\delta R^{(i)} \times \delta R^{(i)} \Delta t = \mathbf{\hat{z}} \left(-\delta R^{(i)} \times \delta R^{(i)} \Delta \lambda \right) \]

This may be rewritten as

\[\Delta \lambda = -\frac{\delta R^{(i)}}{\delta R^{(i)}} \]

and in the limit as \(\Delta t \to 0 \)

\[\dot{\lambda} = -\mathbf{\hat{z}} \cdot \nabla \left(C \cdot U \cos \lambda \right) \]

(7)

where the operator \(\mathbf{\hat{z}} \cdot \nabla \) is

\[\mathbf{\hat{z}} \cdot \nabla = \left(\sin \lambda \frac{\partial}{\partial x} + \cos \lambda \frac{\partial}{\partial y} \right) \]

and operates only on \(C \) and \(U \).

Equation (7) has a revealing physical interpretation. From Figure 6 we see that the gradient of the speed of sound \(C \) on forward portions of the wing, is a vector pointing forward and slightly outward from the centerline; whereas, from Figure 7 we see that the gradient of the local flow speed \(U \) is nearly in the opposite direction. Although it is not apparent from the figures because they are plotted to different scales, the magnitude of the gradient of \(U \) is about five times that of the gradient of \(C \). From the energy equation \(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} U^2 = \text{constant} \), \(U \approx -5.0 \text{ C} \). The local Mach number is increasing in the downstream direction. Figure 2 shows that, under these conditions there are only two stable ray angles; those for which the gradient of \(C - U \cos \lambda \) is zero. As the ray propagates through the flow field it will always tend towards one of these two orientations.
Figure 2. Stability of Ray Angles When The Gradient of Local Flow Speed Exceeds the Gradient of Local Speed of Sound.

We now write Equations (3) and (7) in difference form

\[\Delta x = \left[U - C \cos \lambda \right] \Delta s \]
\[\Delta y = \left[C \sin \lambda \right] \Delta s \]
\[\Delta \lambda = - \left[\sin \lambda \left(\frac{\partial C}{\partial y} - \cos \lambda \frac{\partial U}{\partial y} \right) \right] \Delta s \]

where \(\Delta s \) represents an increment in disturbance travel time \(s \), defined previously. To determine \(u(x, y; 0, x_0, y_0; 0) \) it is necessary to know a steady state distribution of \(C(x, y) \), \(U(x, y) \), and their derivatives at any point in the flow field over the wing and in the surrounding flow field in the plane of the wing. A means for establishing these is given in Section 5. Assume they are known. Then the procedure used is as follows:

1. Select any source point, on or off the wing, \((x_0, y_0)\).
2. Select a series of initial ray angles, A_i, $i = 1, 2, \ldots$

3. Select an initial increment in disturbance travel time, $\Delta \theta_0$.

4. For each of the ray angles store $x^{(i)}$, $y^{(i)}$, $\sin A_i$, $\cos A_i$, and $\Delta \theta_i$, $i = 1, 2, \ldots$

 a. At $x^{(i)}$, $y^{(i)}$ compute and store for $x^{(i)} = x^{(i)} + \Delta x^{(i)}/2$ and
 $y^{(i)} = y^{(i)} + \Delta y^{(i)}/2$, holding A constant.

 b. Iterate on $x_0^{(i)} = x^{(i)} + \Delta x^{(i)}/2$, $y_0^{(i)} = y^{(i)} + \Delta y^{(i)}/2$,
 and $\Delta \theta_0^{(i)} = \Delta \theta_0^{(i)}$ until they converge or exceed the maximum iterations.
 In the latter case replace $\Delta \theta_0^{(i)}$ by $\Delta \theta_0^{(i)}/2$ and repeat the iteration. If they converge in three trials or less, replace $\Delta \theta_0^{(i)}$ by $2\Delta \theta_0^{(i)}$.

 c. Replace $x^{(i)}$ by $x_0^{(i)}$, $y^{(i)}$ by $y_0^{(i)}$, and return to a.

The solutions presented above are believed to be good approximations to the exact solutions for the following reasons:

1. For the case of a uniform flow they reduce to the proper linearized expressions.

2. The phase of the disturbance will be exact, although the amplitude may be slightly in error.

3. In an inner region in the immediate neighborhood of the source location (x_0, y_0, A_0) they approach the correct solution.

4. For a one-dimensional mean flow with A_0 approaching unity they reduce to Lamb's earlier solution (Reference 2).

5. In the limit of steady flow ($A = 0$), the solutions give results equivalent to the local linearization method of Sprueter and Alkane (Reference 4). This has been demonstrated by Hubbert (Reference 5).

6. Inasmuch as the proposed approximation only affects the receding part of the solution, the proper limiting solution for high frequencies (Reference 6), should always be obtained since the receding-wave effects are largely cancelled out due to the rapid phase variations.

This method gives reasonable results, i.e., reasonable based on a comparison with results obtained from the differential equation method. However, the ray paths did not conclusively show the existence of the focal point that the second method revealed.
Non-Linear Differential Equation Method

From Equations (3) we may write the slope of the ray path

$$\frac{dx}{dy} = \frac{M - \cos \lambda}{\sin \lambda}$$

and solving this equation for \(\cos \lambda \), we get

$$\cos \lambda = \frac{M - r \sqrt{r^2 + M^2}}{1 + r^2}$$

where

$$r = \frac{dx}{dy}$$

The transmission time from source to receiving point is given by

$$t = \int \frac{ds}{V}$$

where the integration is taken along the path and

$$ds = \sqrt{1 + r^2} \, dy$$

The velocity along the path is obtained from the vector sum of the two velocity components

$$V = \sqrt{V_x^2 + 1 - 2M \cos \lambda}$$

Substituting equations (12), (13), and (10) into equation (11) we have:

$$t = \int \frac{\sqrt{1 + r^2}}{\sqrt{V^2 + 1 - 2M \cos \lambda}} \, dy$$

which reduces to

$$t = \int \frac{(1 + r^2)}{\sqrt{V^2 + 1 - 2M \cos \lambda}} \, dy$$

The radicand in the denominator is a perfect square. Thus,

$$t = \int \frac{(1 + r^2)}{C \left[M r \pm \sqrt{r^2 + M^2} \right]} \, dy$$

which reduces to

$$t = \int \frac{M + \sqrt{r^2 + M^2}}{C (M^2 - r^2)} \, dy$$
At this point we relate the local acoustic velocity, \(C = C(x, y) \), to the local Mach number by imposing the condition of conservation of energy. For non-viscous flow, the total temperature is conserved. It is easily verified, that under this condition

\[
\frac{d}{dy} \left(\frac{C^2}{C_0^2} \right) = \frac{\rho u M^2}{\rho_0 u_0 M_0^2} \tag{16}
\]

where \(u = 1/4 \), for a diatomic gas, has been used. Substituting Equation (16) into Equation (15), we get

\[
\theta = \frac{1}{C_0 \sqrt{\rho u M^2}} \int \frac{\rho u M^2}{(M^2 - 1)} \, dy \tag{17}
\]

where the upper sign applies to receding waves and the lower sign to advancing waves. Equation (17) contains all the elements for the solution. However, the integrand is a function of \(x, y \), and \(dx/dy \). This equation may be written in symbolic form

\[
\theta = \int \frac{\partial}{\partial y} F(x, y, \frac{\partial F}{\partial y}) \, dy
\]

which suggests the use of Ruler's equation to find the minimum time \(\theta \), for the disturbance to travel to a field point \((x_1, y_1) \)

\[
\frac{d}{dy} \frac{\partial F}{\partial \nu} - \frac{\partial F}{\partial \theta} = 0 \tag{18}
\]

In order to simplify the notation, we set

\[
F = \frac{M^2 - 1}{M - 1}
\]

where

\[
\theta = \theta(x, y) = \sqrt{\frac{x^2 + 1}{y^2}}
\]

\[
\beta = \beta(x, y, z) = \sqrt{\frac{x^2 + 1}{y^2}}
\]

and \(r \) has been previously defined. We will need

\[
\frac{\partial F}{\partial \nu} = \frac{M^2 - 1}{M - 1} \left[\frac{\partial M}{\partial \nu} \frac{\partial M}{\partial \nu} + \frac{M^2 M}{(M^2 - 1)^2} \left(\frac{\partial M}{\partial \nu} - \frac{2 M M}{(M^2 - 1)} \right) \right]
\]

\[
\frac{d}{dy} \left(\frac{\partial F}{\partial \nu} \right) = \frac{M^2 - 1}{M - 1} \left[\frac{\partial M}{\partial \nu} \frac{\partial M}{\partial \nu} + \frac{M^2 M}{(M^2 - 1)^2} \left(\frac{\partial M}{\partial \nu} - \frac{2 M M}{(M^2 - 1)} \right) \right]
\]

\[
+ (M + \frac{\partial M}{\partial \nu}) \left[\frac{(M^2 - 1) \frac{\partial M}{\partial \nu} - 2 M M}{(M^2 - 1)^2} \frac{\partial M}{\partial \nu} \right]
\]

8

Approved for Public Release
Then, making use of the relationships
\[
\frac{dM}{dy} = r M_x + M_y,
\]
\[
\frac{dN}{dy} = \frac{1}{\beta} \left[r \frac{dN}{y} - r M_x M_y - M_y \right],
\]
\[
\frac{dF}{dy} = \frac{1}{\beta} \left[r M_x M_y + M_y \right],
\]
solving for \(\frac{dN}{dy} \) and combining terms, we get
\[
\frac{dN}{dy} = \frac{1}{\beta} \left([ram_e + (r - 1) r z] M_y + \left[\frac{1}{2} r^2 (r - 1)^2 \right] M_e + \left[\frac{1}{2} r^2 (r - z) \right] M_e \right) \tag{19}
\]
Equation (19) is a second order, second degree differential equation of the form
\[
\frac{d^2N}{dy^2} = f(x, y, \frac{dN}{dy})
\]
It is second degree because \(t \) represents a radical. However, it can be solved numerically by any of the standard repetitive processes. We employed a fourth order Runge-Kutta procedure.

There are certain difficulties that arise in the numerical evaluation of Equation (19). These are first listed and interpreted and then equations used to surmount them are presented.

1. Along some ray paths \(\frac{dN}{dy} \) becomes infinite even when the Mach number is not equal to 1.
2. Equation (19) is singular at Mach number = 1.0.
3. In the supersonic region, signals sometimes become trapped on the local Mach line. This happens when \(\cos \lambda = 1/M \). Signals tend to gravitate to this condition. Such trapped signals cannot cross the sonic line. They approach the sonic line as a limit and are cancelled out there.

To overcome the difficulty listed in item (1), it is necessary to use \(x \) instead of \(y \) as the independent variable. This is done by applying the equation
\[
\frac{d^2y}{dy^2} = \frac{1}{\left(\frac{dy}{dx} \right)^2} \frac{d^2x}{dx^2} \tag{20}
\]
It is convenient here to introduce some new notation. Re-write equation (19) in the form

\[
\zeta'' = \frac{1}{AB} \left(\frac{M^2}{\alpha} (\frac{\beta^4}{\alpha^2}) \frac{\beta^{2+\delta}}{\alpha^3} \right) M_y \]

where the new notation, together with some other notation which will be used later, is defined as follows:

\[
\begin{align*}
\kappa' &= \frac{\beta^{2+\delta}}{\alpha^3} \\
\beta &= \frac{\beta^{2+\delta}}{\alpha^3} \\
R_1 &= \frac{\beta^{2+\delta}}{\alpha^3} \\
R_2 &= \frac{\beta^{2+\delta}}{\alpha^3}
\end{align*}
\]

Substituting Equation (20) into Equation (21), we get

\[
\begin{align*}
\eta'' &= \frac{1}{AB} \left(\frac{M^2}{\alpha} (\frac{\beta^{2+\delta}}{\alpha^3}) \right) M_y \\
- \frac{M^2}{\alpha} (\eta'' + 1) M_y \\
\eta'' &= \frac{1}{AB} \left(\frac{M^2}{\alpha} (\frac{\beta^{2+\delta}}{\alpha^3}) \right) M_y \\
- \frac{M^2}{\alpha} (\eta'' + 1) M_y
\end{align*}
\]

The limiting form of Equation (20) at \(M = 1 \) is:

\[
\zeta'' \bigg|_{M=1} = \frac{1}{2A} \left(2 \kappa'' + \zeta'' + \frac{2}{\kappa} \right) M_y + \frac{1}{A} (\zeta'' + \omega) M_x
\]

In the supersonic region, when the signal is trapped on the local Mach line, and

\[\cos \lambda = \frac{\omega}{M}, \quad \sin \lambda = \frac{\sqrt{\lambda^2 - \omega^2}}{M}, \quad \text{and} \quad |x| > \beta \]

equation (20) reduces to

\[
\zeta'' = M \left(\frac{\alpha^2}{2} + M_x \right)
\]
A complete set of equations, together with their areas of applicability, will now be outlined.

Complete Set of Equations where \(Y \) is the Independent Variable

\[
\alpha'' = \frac{1}{AB} \left\{ \frac{M}{E} \left(\frac{M}{Z^2 + \alpha} \right)^2 \right\} M_g \\
+ \frac{M}{A} \left(z^2 + \alpha \right) M_x
\]

(24)

\[
\frac{dz}{dy} = \frac{1}{E} \left\{ \frac{N_y + N_x (M^2 + N^2)}{M_z^2} \right\}
\]

(25)

\[
\alpha'' \bigg|_{M=0} = \frac{1}{2A} \left\{ 2z' \cdot x' + \frac{z}{z'} \right\} M_g \left(\frac{M}{z^2 + \alpha} \right)
\]

(26)

\[
\frac{dz}{dy} \bigg|_{M=0} = \frac{\sqrt{\gamma}}{2E} \left(z' + \frac{1}{z'} \right)
\]

(27)

\[
\alpha'' \bigg|_{x'=\rho} = M \left(\frac{M}{z^2 + \alpha} \right)
\]

(28)

\[
\frac{dz}{dy} \bigg|_{x'=\rho} = \frac{M \sqrt{\gamma + 1}}{E z'}
\]

(29)

A complete set of equations were also developed using \(x \) as the independent variable. However, for the sake of brevity, and since they are obtained by a single change of variable, they will not be listed here. Equations (26) and (27) apply where an advancing ray path crosses the sonic line, and equations (28), (29) apply where a ray path, in the supersonic region, becomes trapped on the local Mach line. It remains to describe the regions of applicability of the upper and lower signs of equations (24) and (25). In what follows, "right branch" will be specified where \(z > \alpha \) and left branch will be specified if \(z < \alpha \). Here \(\alpha \) is the local value along the ray path. The end points are not specified for these points we use \(x \) as the independent variable.

The upper sign is used for

1. Subsonic, left branch
2. Supersonic, receding, right branch
3. Supersonic, advancing, left branch

Approved for Public Release
The lower sign is used for

(1) Subsonic, right branch
(2) Supersonic, receding, left branch
(3) Supersonic, advancing, right branch
THE NON-UNIFORM FLOW FIELD

In the application of each of the methods contained in this report, it is necessary to know certain of the properties of the transonic flow field on, and in the neighborhood of, the wing. Figures 3 and 4 show the distributions of local flow speeds and sonic speeds over a 65° delta wing model in a wind tunnel in which the Mach number was 1.04 (taken from Reference 6). Speeds were computed from steady state pressure data at 27 points on the wing. The figures are intended only to show the general characteristics of the flow, such as: (1) The local sonic line shifts aft with distance from the centerline but crosses the leading edge inboard of the tip, (2) Mach number variations in both the streamwise and spanwise directions must be considered and cannot be considered to be linear, and (3) Separated flow is indicated over the aft and inboard portion of the wing. To consider the last of these characteristics is beyond the scope of this study. However, the first two are amenable to analysis using available theories and techniques.
Figure 3. Local Flow Distribution on a 65° Δ at a Transonic Speed
Figure 4. Sonic Speed Distribution on a 65° Δ at a Transonic Speed
Mach number distributions over areas off the wing were computed from an approximate theoretical solution of the flow field that matched pressure distributions on the wing. In order to avoid a discontinuity at the juncture of the two regions, a small transition region was defined over which the two functions were joined by a numerical smoothing technique.

Let:

\[M_L = M_L(x,y) = \text{Mach number} \]
\[\Phi = \Phi(x,y) = \text{Perturbation potential} \]
\[\gamma = \gamma(x,y) = \text{Thickness ratio} \]

For a steady-state, non-lifting flow

\[(1-M^2_L)\Phi_{xx} + \Phi_{yy} + \Phi_{zz} = 0 \] \hspace{1cm} (30)

and

\[\Phi_\delta(x,y,0^+) = \pm \gamma \delta(x,y) \] \hspace{1cm} (31)

Where \(\delta(x,y) \) is a function describing the variation of the surface from the mean.

Using parametric differentiation with respect to \(\gamma \), (Reference 5),

\[\delta \gamma' = \delta(x,y) = \frac{\partial \delta}{\partial \gamma} \]

Equation (30) becomes:

\[\delta \gamma'[(1-M^2_L)\Phi_{xx} + \Phi_{yy} + \Phi_{zz}] = 0 \] \hspace{1cm} (32)

\[\delta \gamma'(x,y,0^+) = \pm \delta(x,y) \]

After having obtained the solution of equation (32), the local Mach number distribution is obtained by relating local Mach number to the coefficient of pressure, \((C_p) \). Starting with the following basic relations:

Let \(\mu = \frac{V_u - U_L}{V_o} \)

then \(\mu = \frac{1}{V_o} \frac{\partial P}{\partial \mu} = -C_{P/2} \) \hspace{1cm} (33)
\[\alpha^2 + \frac{1}{2} (\delta-1) \mu^2 = \text{Constant} \] \hspace{1cm} (34)

where \(q = U_L \) at infinity
\[q = U_L \left(i + \mu \right) \text{ elsewhere} \]
\[a = \text{speed of sound} \]

16

Approved for Public Release
We have: \[a_{n = 1}^2 + \frac{1}{2} (k-1) \nu C_p = a_{\infty}^2 + \frac{1}{2} (k-1) \nu C_p (1+c)^2 + \nu (1+c^2) \]

\[a_{\infty}^2 = a_{\infty, 0}^2 + (k-1) \nu C_p u \]

Using equation (31):

\[a_{L}^2 \equiv a_{\infty, 0}^2 \left[1 + \frac{1}{2} (k-1) \frac{M_{\infty}^2 C_p}{C_p} \right] \]

The coefficient of pressure, \(C_p \), is of order \(1 \), and \(M \) is \(O(1) \).

Therefore, to sufficient accuracy,

\[a_{L}^2 \approx a_{\infty, 0}^2 \left[1 + \frac{1}{2} (k-1) \frac{M_{\infty}^2}{C_p} \right] \]

\[U_L = U_{\infty, 0} (1+c^2) \approx U_{\infty, 0} (1 + \frac{1}{2} C_p) \]

and from these relations:

\[M_L \approx \frac{M_{\infty, 0} (1 - \frac{1}{2} C_p)}{1 + \frac{1}{2} (k-1) \frac{M_{\infty}^2}{C_p}} \]

Noting again the order of \(M_{\infty} \) and \(C_p \), to sufficient accuracy,

\[M_L \approx M_{\infty, 0} \left[1 - \frac{1}{2} \frac{M_{\infty}^2}{C_p} \right] \]

or

\[M_L \approx M_{\infty, 0} \left[1 - \frac{k-1}{k} \frac{M_{\infty}^2}{C_p} \right] \]

Equation (9) is the expression that was used to relate local Mach number to \(U_{\infty} \) on regions off the wing.

A solution of equation (30), using the results of equation (9), was worked out for a special configuration. The special wing configuration is depicted in Figure (5).

![Diagram of a wing](image)

Figure 5. A Thin Wing In Rectilinear Flight

The solution is:

\[C_p(x, y) - C_p(x, 0) = 2 \left\{ \frac{1}{2} \left[\frac{\partial S}{\partial y} + \frac{\partial S}{\partial z} - 2 \right] H(x-a) \right\} \]

\[-2 \frac{1}{2} \left[\frac{\partial S}{\partial y} + \frac{\partial S}{\partial z} - 2 \right] H(x-b) \]

\[-2 \left[\frac{\partial S}{\partial y} + \frac{\partial S}{\partial z} - 2 \right] H(x-b) \]

where \(H(x) \) is a step function.

17

Approved for Public Release
\[
\frac{\partial A_l}{\partial x} = -2\frac{f}{\sqrt{A_l}} \left[|y-s|^\xi \frac{x}{|y-s|} + |y+s|^\xi \frac{x}{|y+s|} \right] H(x-a) \\
+ 2f_2 \epsilon_2 \left[|y-s|^\xi \frac{x}{|y-s|} + |y+s|^\xi \frac{x}{|y+s|} \right] H(x-b)
\]

\[
\frac{\partial A_l}{\partial y} = -2f \left[|y-s|^\xi \frac{x}{|y-s|} + |y+s|^\xi \frac{x}{|y+s|} \right] H(x-a) \\
+ 2f_2 \epsilon_2 \left[|y-s|^\xi \frac{x}{|y-s|} + |y+s|^\xi \frac{x}{|y+s|} \right] H(x-b)
\]

WHERE:

\(f = \frac{\cos^2 \alpha}{\sin \alpha} \), \(\epsilon = \frac{\pi}{2\pi \alpha \cos \alpha} \), \(s = \frac{\pi}{\tan \alpha} \)

\(f_1 = \frac{\cos^2 \beta_1}{\sin \beta_1} \), \(\epsilon_1 = \frac{\pi}{2\pi \alpha \cos \alpha} \), \(s_1 = \frac{(x-a)/(1-a) \tan \beta_1}{\tan \alpha} \)

\(f_2 = \frac{\cos^2 \beta_2}{\sin \beta_2} \), \(\epsilon_2 = \frac{\pi}{2\pi \alpha \cos \alpha} \), \(s_2 = \frac{(x-b)/(1-b) \tan \beta_2}{\tan \alpha} \)

\(\tan \beta_1 = (1-a) \tan \alpha \), \(\tan \beta_2 = (1-b) \tan \alpha \)

After determining a distribution of \(C_0 \) and its derivatives from equations (36), (37), and (38), the Mach number distribution, with its derivatives, is computed from equation (39).
DESCRIPTION OF THE COMPUTER PROGRAM

The equations for the ray paths are solved in the following manner:
Let the independent variable be γ and
\[
V_1 = \frac{\partial \gamma}{\partial y}
\]
\[
V_2 = \gamma
\]
\[
V_3 = t
\]
Then
\[
\frac{\partial V_1}{\partial \gamma} = f_1(V_1, V_2, y)
\]
\[
\frac{\partial V_2}{\partial \gamma} = V_1
\]
\[
\frac{\partial V_3}{\partial \gamma} = f_2(V_1, V_2, y)
\]
These three simultaneous differential equations are solved in a step-by-step manner by use of a standard "SHARE" subroutine which is based on the Range Kutta method. When $\partial \gamma/\partial y$ becomes greater than one, a variable change takes place in the program, and x becomes the independent variable.

A signal (in the supersonic region) is considered "trapped" on the local Mach line when
\[
|y^2 - (M^2 - 1)| \leq E 1
\]
When, for this trapped signal, $(M - 1) < E 2$, the integration stops and a new ray line is started. This logical flow is shown in the chart on page 23.

The values of α_c used in the program are determined by the parameter (NLs). If (NLs) is an odd integer, it will be rounded down in the program to an even integer. Values of α_c vary from zero to π and from zero to $-\pi$ in an arithmetic progression.

Computation of a ray path (other than for a "trapped signal") ceases under the following conditions:
\[
\begin{align*}
\frac{\partial N}{\partial y} &> 0 \\
\frac{\partial N}{\partial y} \leq 0 &\quad |y_{MAX} \leq |y| \\
N_{MAX} &< N_{INT}
\end{align*}
\]
where N_{INT} is the number of points on the ray path already computed. This logical flow is shown in the chart on page 22.

Subroutine DERIV computes the appropriate derivatives.

Subroutine CNTRL accomplishes variable changes, stores local values in appropriate locations for later printing, and performs exit tests.

Subroutine PMACH computes the local Mach number and the partial derivatives of the Mach number.

Approved for Public Release
Subroutine SOMK computes coordinates on the planform where $N = 1$.

Sample data sheets with numbers which have been used in a computer run are in Appendix II. The output sheets are included. The output format is self-explanatory, with the exceptions of certain test words that are printed out at the beginning of the plots for each ray-path. Definitions for these words can be found in the comment statements at the beginning of the listing in Appendix I. The values listed for these test words apply to the last point plotted for the ray-path.
MAIN PROGRAM

Subroutine SONK Computes Sonic Line

Subroutine LIMITS Sets Plotting Grid Limits

Subroutine GRAPH Produces Cathode Ray Tube Plots

Subroutine FMACH Computes Mach No.
Determines Whether X or Y is Independent
Determines Left or Right Branch
Determines Type of Source

Runge Kutta Integrating Subroutine
Subroutine POT Computes Velocity Potential Along Path due to Source at \((x_0, y_0)\)

Approved for Public Release
SUBROUTINE RESI

STORAGE
ALLOCATION
CALL RESI
RETURN

SUBROUTINE RESI

STORAGE
ALLOCATION

INITIAL VALUES
OF VARIABLES

CALL DERIV COMPUTE
INITIAL VALUES OF
DERIVATIVES

CALL CNTRL

COMPUTE VARIABLES
AND DERIVATIVES AT
TWO HALF STEPS

COMPUTE VARIABLES
AT END OF INTERVAL

TEST FOR FIXED OR
VARIABLE INTERVAL

IF INTERVAL IS VARIABLE
COMPUTE ERROR. IF TOO
LARGE, DECREASE INTERVAL,
REPEAT STEPS IF TOO SMALL,
INCREASE INTERVAL AND
ACCEPT.

CALL CNTRL (NTRY)

IF:
NTRY+1, Compute Next Step
NTRY+6, Exit to Main Program
NTRY+3, Repeat Step
NTRY+4, Restart Integration

Subroutine DERIV Computes Derivatives

Subroutine CNTRL Executes Variable Changes, Stores Current Values, Executes Exit Tests

This loop calls DERIV 8 times

NTRY is Re-set in CNTRL

Approved for Public Release
DISCUSSION OF RESULTS

This report contains two methods for calculating the velocity potential along sonic ray lines emanating from any point in a non-uniform flow field, i.e., one that varies from locally subsonic to supersonic speeds. Both methods apply to pulses emitted by sources or dipoles. It has been demonstrated that both methods yield nearly identical ray paths and times of transmission. These presented were obtained using the second method.

Figures 6 through 13 show ray paths of acoustic signals emanating from various points in a non-uniform transonic flow field. The reader may want to try his hand at tracing one of the ray paths in a region of interest such as near a leading edge. If so, it should be helpful to recall the discussion starting with Equation (7), through the difference equations of the path, Equation (3), and to the end of that section. An analysis of the differential equation of the path, Equation (24) should also be helpful. These show, for instance, that where the Mach number is constant the curvature of the ray path is zero; for a given Mach number and slope of ray path the curvature is proportional to rate of change of Mach number along the path. Figures 6, 7, 9, and 10 conclusively show that when the variation in Mach number is parabolic in the chordwise and spanwise directions, focal point exist, both in subsonic and supersonic portions of the flow. None of the present theories accounts for the corresponding multiple crossings of the acoustic wave front. Figures 5 and 12 show acoustic signals traveling from regions of supersonic flow to regions of subsonic flow. This can occur, of course, only when the sonic line is swept downstream. Figures 9 and 12 also show rays that have been trapped on the Mach wave, travel outward to the sonic line where the spanwise slope of the ray path becomes zero, and are cancelled there. A study of the ray paths that cross the leading edge shows that in practical applications it is correct to assume they do not return.

These results permit the formulation of a numerical procedure. A box method is outlined in Appendix III. It establishes velocity potentials at all box centers on an aerodynamic surface and the corresponding generalized forces.
Figure 6. Ray Paths for a Source or Doublet at (0.18c, 0.0)
Figure 7. Ray Paths for a Source or Doublet at (0.28c, 0.0)
Figure 3. Ray Paths for a Source or Doublet at (0.6e, 0)
Figure 9. Ray Paths for a Source or Doublet at (0.4R, 0.0)
Figure 10. Ray Paths for a Source or Doubler at (0.02c, 0.04c)
Figure 11. Ray Paths for a Source or Doublet at (0.34c, 0.14c)
Figure 12. Ray Paths for a Source or Doublet at (0.54c, 0.16c)
Figure 13. Ray Paths for a Source or Doublet at (0.57c, 0.20c)
CONCLUSIONS AND RECOMMENDATIONS

Two methods have been outlined in detail, and one of them has been completely mechanized for calculating the velocity potentials along acoustic ray paths emanating from any point in a non-uniform transonic flow field over a lifting surface. The one mechanized gives the ray path and velocity potential for the minimum time of travel from the source point to the field point.

To calculate pressures over the planform and generalized forces, it will be necessary to develop a procedure for calculating the velocity potential at an arbitrary point due to a sheet of sources, covering the wing surface, and the flow field in the plane of the wing out to a distance of several wing spans in the y-direction, or due to a sheet of doubles covering the wing surface. The latter is recommended for economy reasons.

The computer program in this report may be used to refine the doublet box method of Rodemich (3) in such a way as to include the (possibly very important) influence of wing thickness distribution on transonic airloads. A doublet box method similar to the one Rodemich developed (Reference 3) is recommended. The procedure is heuristically described in Appendix III. For each of a selected set of points in a sending box, the distribution of velocity potentials along ray lines throughout the zone of influence can be determined. An interpolation scheme will yield from these the velocity potentials at box centers and a numerical integration procedure will yield a velocity potential influence coefficient for each of the box centers. It will be necessary to solve a set of simultaneous equations to establish the strengths of doublets required to satisfy the tangential flow condition in the subsonic flow region. The order of the set will be equal to the number of box centers in the subsonic region on the wing. In the supersonic region the doublet strengths can be established sequentially. The use of doublets to solve unsteady supersonic flow problems has been outlined by Ashley in Reference 7.

It is recommended that this method be fully developed for the purpose of calculating generalized forces on wings in harmonic motion at transonic speeds. A computer program that would predict, with reasonable accuracy, the flutter characteristics and unsteady aerodynamic loads on a wing responding to externally applied forces, such as gusts, would fill an important gap in available technology.
REFERENCES

APPENDIX I. Program Listings

SINTC MAIN 500
C FORTRAN PROGRAM TO COMPUTE (AND PLOT) THE PATHS OF ACOUSTIC SIG - SN1CDG02
C NALS (AND TRANSMISSION TIMES) ON AN AIRFOIL IN A SONIC FLOW FIELD - SN1CDG03
C ACCOUNTING FOR VARIATION IN LOCAL MACH NUMBER.
C CM = COEFFICIENTS OF MACH EQUATION. (SEE SUBROUTINE FMACH.)
C PLX AND PMI ARE CONSTANTS DESCRIBING THE PLANE FORM GEOMETRY.
C THE PROGRAM ALLOWS FOR EITHER X OR Y TO BE THE INDEPENDENT VARIA-
C BLY, DEPENDING ON THE CURRENT VALUE OF X-PRIME, WHICH SETS IVAR.
C IF IVAR = 1, IF IVAR = 2,
C YY = CURRENT VALUE OF Y YY = CURRENT VALUE OF Y
C DYT = CURRENT VALUE OF DX DYT = CURRENT VALUE OF DY
C XX(1) = CURRENT VALUE OF Y-PRIME XX(1) = CURRENT VALUE OF X-PRIME
C XX(2) = CURRENT VALUE OF Y XX(2) = CURRENT VALUE OF X
C XX(3) = CURRENT VALUE OF TIME XX(3) = CURRENT VALUE OF TIME
C XX(4) = CURRENT VALUE OF R-BAR XX(4) = CURRENT VALUE OF R-BAR
C DXX(1) = Y-DOUBLED PRIME DXX(1) = X-DOUBLED PRIME
C DXX(2) = CURR. VALUE OF Y-PRIME DXX(2) = CURR. VALUE OF X-PRIME
C DXX(3) = CURR. VALUE OF DT/DX DXX(3) = CURR. VALUE OF DT/DY
C DXX(4) = CURRENT VALUE OF DR/DR DXX(4) = CURRENT VALUE OF DR/DY
C IVAR IS ORIGINALLY SET IN MAIN PROGRAM, AND THEN RESET ON EACH
C PASS THROUGH SUBROUTINE CTNRL.
C WORK = WORKING AREA FOR SUBROUTINE RK3.
C IFVD = FALSE AND IDEP = TRUE FOR VARIABLE INTERVAL.
C IFVD = TRUE FOR FIXED INTERVAL.
C SX = VECTOR CONTAINING COMPUTED X VALUES.
C SXP = VECTOR CONTAINING COMPUTED X-PRIME VALUES.
C SY = VECTOR CONTAINING COMPUTED Y VALUES.
C SYP = VECTOR CONTAINING COMPUTED Y-PRIME VALUES.
C TIM = TRANSMISSION TIMES.
C FM = CURRENT MACH NUMBER.
C ISRS = 0 DEFINES A SUBSONIC SOURCE, RECEDING PATH.
C ISRS = 1 DEFINES A SUPERSONIC SOURCE, ADVANCING PATH.
C ISRS = 1 DEFINES A SUBSONIC SOURCE.
C ISRS = 0 DEFINES A SUPERSONIC SOURCE, RECEDING PATH.
C IDR = 1 FOR RIGHT BRANCH, 0 FOR LEFT.
C NCNT IS THE COUNTER FOR THE VECTORS SX,SY,SXP,SYP,TIM. WHEN NCNT <= 0
C = NH, MAX. INTEGRATION STOPS, AND THE FLOW PASSES TO NEXT PATH.
C ITRAP = 1 INDICATES SIGNAL IS TRAPPED ON THE LOCAL MACH CONE.
C DZ IS INITIAL VALUE OF INCREMENT.
C CINF = REMOTE SPEED OF SOUND IN ROOT CHORDS PER SECOND.
C FNINF = REMOTE MACH NUMBER.
C POTE = THE POTENTIALS MACH CONTAINS THE VELOCITY POTENTIALS ALONG A
C RAY PATH, NORMALIZED ON BD.
C FREQ = ASSUMED FREQUENCIES IN RADIAN PER SECOND.
C COMMON
S WORK, WORK(50)

34

Approved for Public Release
41: ISR=1
 GO TO 50
42: ISR=2
50: CONTINUE
C
SET I:0R8
CRL =C03(FIL)
RM1,0,0F
IF(FM=1.0) GO TO 50,51,51
51: IF(FM=1.0) -E2 92,92,98
52: GO TO (53,54),IVAR
53: YPM =TEST2/TEST1
 TST=1,0,0YPM+2(FM+2)-1.0)
 GO TO 56
54: YPM =TEST1/TEST2
 TST= YPM+2(FM+2)-1.0)
 GO TO 56
55: IF(CAL-RM) 68,68,64
 GO TO 70
56: ISORB=1
 GO TO 70
57: ISORB=-1
 GO TO 70
60: ISORB = 0
C
70: NCONTS=1
 GO TO (80,90),IVAR
C
IF IVAR=1, X IS THE INDEPENDENT VARIABLE.
C
80: YY = YOF
 IF(TEST1) 81,81,82
81: DYY = DZ
 GO TO 85
82: DYY = DZ
83: XX(1) = TEST2/TEST1
 XX(2) = YOF
 XX(3) = 0.
 XX(4) = 0.
 GO TO 100
C
IF IVAR=2, Y IS THE INDEPENDENT VARIABLE.
C
90: YY = YOF
 GO TO (91,92),ISR
91: DYY = 0Z
 GO TO 95
92: DYY = -DZ
93: XX(1) = TEST1/TEST2
 XX(2) = YOF
 XX(3) = 0.
 XX(4) = 0.
100: CALL RK53 (DERIV,CNTRL,XX,OXX,ATABL,ATABL,WORK,YY,DYY,IVAR,IFV0,ISR,NTRY,ISR)
1070: FORMAT (HS,3X,43H IVAR NCONTS ISORB ISR NTRAP MLC5 =)
 END
 END
 END
 END
 END
1040 FORMAT (H0,27X, 617)
WRITE (6,1050)
WRITE (6,1050) I1VAR,NCNT,1SR1,1SR,ISTRAP,NCN
C
1050 FORMAT (2H ERROR IN AS53, IERR = 14)
IF (IERR.EQ.10) 100,140,105
100 WRITE (6,1050) IERR
GO TO 400
1050 FORMAT (4X, 42X, 4HO = E16.8 / 43X, HXY = E16.8 / 44X, IOHMAC NO. = E5X)
11H, 42X, TET-PRIME, 11X, TET-BAR, 12X, HTIME /)
340 FORMAT (1H, 5E10.8)
140 WRITE (6,1050) X(1), Y(1), SY(1), SYP(1), TIM(1), 1=1, NCNT
WRITE(6,1040) (X(I), Y(I), SY(I), SYP(I), TIM(I), I=1, NCNT)
C
CALL GRAPH (G, MLC, -NCNT, SY, SX)
CALL POT INF, FREQ, FOTE
C
1100 FORMAT (H5, 25X, 48N VELOCITY POTENTIALS ALONG A RAY PATH FOR A SOURC
C
ICE AT)
1110 FORMAT (H5, 42X, 4HO = E16.8 / 43X, HXY = E16.8 / 44X, IOHMAC NO. = E5X)
1.8 / 33X, 3OM ALTERNATING REAL AND IMAGINARY)
1120 FORMAT (5H, 6X, PHIBEIAGA = E16.8 /)
C
DO 300 N=1,NF
IF (N .NE. 1) GO TO 200
WRITE (6,1100)
WRITE (6,1110) X0(NS), Y0(NS), FL
200 WRITE (6, 1120) FRECN
WRITE (6, 1030) ((FOTE1,K, M), K=1,2) , I=1, NCNT
300 CONTINUE
500 CONTINUE
END
C

GO TO 10, 20, IVAR

C

* IS THE INDEPENDENT VARIABLE

10 CALL FFNCH (TT, XX (2), FN, FNH, FNH)

HXX (1) = XX (1)
B = FMH FN .1, D
TSL = 1.0 - RBBB
A = FMH + 3.0
SA = DATA (A)

IF (B) 105, 103, 101

101 BETA = 50RT (B)

IF (ITRAP .LE. 1) GO TO 104

104 IF (15005 .LE. 1) GO TO 103

103 IF (ITSL .LE. 1) GO TO 105

ITRAP = 1

GO TO 104

105 IF (ITSL .LE. 1) GO TO 215

ITRAP = 2

TSL = 0.

215 RND = 50RT (TSL)

DXX (4) = RND

RAB = 1.0 (RND)

TH2 = FMH (FMH + 11.0)/B

THZ = 2.0 FMH (FMH + 5.0) RAB

THC = (FMH + 3.0) (FMH + 3.0) RAB

GO TO 105

104 RND = 1.0 / (50RT 2)

DXX (4) = 0.

105 IF (15005) 11, 15, 10

11 GO TO (12, 13, 15

12 IF (ITRAP) 91, 91, 1

13 IF (ITRAP) 92, 92, 8

15 GO TO (15, 17, 18)

17 IF (ITRAP) 91, 91, 8

18 GO TO (92, 91, 1R)

91 IF (R) 4, 3, 3

92 IF (R) 3, 3, 6

C

* IS THE INDEPENDENT VARIABLE

SN1C110
SN1C115
SN1C119
SN1C1195
SN1C210
SN1C2100
SN1C2105
SN1C2110
SN1C2115
SN1C2121
SN1C2125
SN1C2120
SN1C2125
SN1C2130
SN1C2135
SN1C2140
SN1C2145
SN1C2150
SN1C2155
SN1C2160
SN1C2165
SN1C2170
SN1C2175
SN1C2180
SN1C2185
SN1C2190
SN1C2195
SN1C2200
SN1C2205
SN1C2210
SN1C2215
SN1C2220
SN1C2225
SN1C2230
SN1C2235
SN1C2240
SN1C2245
SN1C2250
SN1C2255
SN1C2260
SN1C2265
SN1C2270
SN1C2275
SN1C2280
SN1C2285
SN1C2290
SN1C2295
SN1C2300
SN1C2305
SN1C2310
SN1C2315
SN1C2320
SN1C2325
SN1C2330
SN1C2335
SN1C2340
SN1C2345
SN1C2350
SN1C2355
SN1C2360
SN1C2365
SN1C2370
SN1C2375
SN1C2380
SN1C2385
SN1C2390
SN1C2395
SN1C2400
SN1C2405
SN1C2410
SN1C2415
SN1C2420
50 CALL FMACH (XX(2);YT,FH,FMX,FNY)
 X = X(1)
 DXX(2) = R
 B = FMX/FH-1.0
 TSI = B/R-B
C
A = 5.0+FMX/FH
SA = SRT(A)
105 IF(SA .LT. 0.) GO TO 108
 IF(ITRA)(.EQ. 1) GO TO 109
 IF(ISORS .EQ. 1) GO TO 109
 IF(TSI .GT. E1) GO TO 108
 ITRAP = 1
 GO TO 109
109 IF(TSI .GE. 0.) GO TO 107
 TSI = 0.
 ITRAP = 2
107 RAD = SRT(TSI)
 DXX(4) = RAD
 RAD = 1.0/RAD
 TH1 = (FH/4) + (FH#2+11.0)E003
 TH2 = 2.0#(FMX(FH#2+6.0)#RR
 TH3 = (RA#D03) + (7.0#(FMX#2+5.0)
 TH4 = (FH/4) + (EH#2+6.0)
 GO TO 110
110 DXX(4) = 0.
 110 IF(ISORS) F2.60.68
 92 GO TO (54,56), IBR
 36 IF(ITRA) 1.1, 3
 56 IF(ITRA) R, 2, 6
 60 GO TO (62, 64), IBR
 62 IF(ITRA) Z, 8, 8
 64 IF(ITRA) 1.1, 6
 66 GO TO (12, 1), IBR
C
1 IF(MABS(.B), .LT. 1.E-03) GO TO 220
 DXX(1) = RAD#(-TH1 + TH2 - TH3)#FMX + TH4 #FMX
 DXX(1) = (S#(ECH#8)) # (FMX#1+RAD)
 GO TO 100
2 IF(MABS(.B), .LT. 1.E-03) GO TO 220
 DXX(1) = (S#(ZH#8)) # (FMX#1+RAD)
 GO TO 100
220 DXX(1) = RAD#(-TH1 + TH2 + TH3)#FMX + TH4 #FMX
 DXX(1) = (S#(ECH#8)) # (FMX#1+RAD)
 GO TO 100
229 DXX(1) = RAD#(-TH1 + TH2 + TH3)#FMX + TH4 # FMX
 DXX(1) = (S#(ECH#8)) # (FMX#1+RAD)
 GO TO 100
3 IF(MABS(.E0), MLB) GO TO 6
 DXX(1) = RAD#(TH1 - TH2 - TH3)#FMX + TH4 # FMX
 DXX(1) = (S#(ECH#8)) # (FMX#1+RAD)
 GO TO 100
60

Approved for Public Release
$\text{DXX}(3) = (\text{SINECH}(B) \cdot \text{RDX} + \text{RAD})$

GO TO 100

4 IF (ABS(B) > 1.5) GO TO 205

204 $\text{DXX}(1) = -1.5 \cdot \text{DXX}(1) + 9 \cdot \text{A}(\text{DXX}(1) + 2.1) \cdot \text{FHY} - (\text{R}/\text{A}) \cdot \text{DXX}(2)$

GO TO 100

205 $\text{DXX}(1) = \text{DAX} + \text{DXX}(1) + \text{DXX}(2)$

GO TO 100

5 $\text{DXX}(1) = \text{FHY} / \text{BETA} + \text{FHY}$

GO TO 100

6 $\text{DXX}(1) = \text{FHY} / \text{BETA} + \text{FHY}$

GO TO 100

7 $\text{DXX}(1) = \text{DXX}(1) - \text{FHY} / \text{BETA} + \text{FHY}$

GO TO 100

8 $\text{DXX}(1) = \text{DXX}(1) - \text{FHY} / \text{BETA} + \text{FHY}$

GO TO 100

9 $\text{DXX}(1) = \text{DXX}(1) - \text{FHY} / \text{BETA} + \text{FHY}$

GO TO 100

10 $\text{DXX}(1) = \text{DXX}(1) - \text{FHY} / \text{BETA} + \text{FHY}$

GO TO 100

11 $\text{DXX}(1) = \text{DXX}(1) - \text{FHY} / \text{BETA} + \text{FHY}$

GO TO 100

12 RETURN

END
SUBROUTINE CNTRL(NTRY)

COMMON

*KEY = XX(1),5YX(10),SX(10),SY(10),XY(10),AL(4),T1H(10)
*V/XX/ (X frustrated),DXX(4),Y,Y,TY/DT,Y,DZ

*CH = CH(6)

*KEY = YVARI,NCNT,TSORS,ISR,ITRAP,NNMAX

*EPS = E1,E2,PH,TMAX

*ANH/y N55, N5C, NLL4

IF(NCNT .NE. 1) GO TO 6

NCO = 1

IF(NR .EQ. 1) GO TO 6

NR = 4

IF(ABS(XX(1)) .LT. .25) GO TO 6

Y = .54DYY

IF(ABS(DXX(1)) .LT. .25) GO TO 7

GO TO 6

7 NTRY = 4

RETURN

6 IF(ABS(XX(1)) .LT. 1.0) GO TO 20

IATRY = 4

GO TO (2,3), IVAR

2 IVAR = 2

GO TO 9

3 IVAR = 1

C SWITCH VARIABLES, SET NEW INITIAL CONDITIONS

SAV = TY

DYY = DYY/XX(1)

10 YY = XX(2)

XX(1) = SXX(1)

XX(2) = SXX

RETURN

20 GO TO (25, 35), IVAR

C STORE CURRENT VALUES WHERE X IS INDEPENDENT VARIABLE.

25 SXX(NCNT) = YY

C CHANGE ISR WHEN Y-PRIM PASSES THROUGH ZERO

IF(ABS(DXX(1)) .LT. 1.0 E-08) GO TO 15

IF((DXX(1) .LT. 0.0) .AND. (XX(1) .LT. 0.0)) GO TO 15

IF(XX .LT. .EQ. 2) GO TO 15

NCO = 2

GO TO (11,12), ISB

11 ISB = 2

GO TO 19

12 ISB = 1

GO TO 19

15 IF(NCO .NE. 2) GO TO 19

IF(ABS(XX(1)) .LT. 1.0 E-08) GO TO 16

NCO = 1

42
19 IF (XX(1) .NE. 0.0) GO TO 27
20 1ST (NCONT) = UNDEF
21 GO TO 24
27 XEP (NCONT) = 1.0/XX(1)
28 SY (NCONT) = XX(2)
29 SYP (NCONT) = XX(4)
30 TIM (NCONT) = XX(3)
31 GO TO 30
35 XX (NCONT) = XX(2)
36 TIM (NCONT) = XX(3)
37 XEP (NCONT) = XX(1)
38 SYP (NCONT) = XX(4)
39 CONTINUE
40 C
41 CONTINUE FOR EXIT CONDITIONS
42 IF (ITRAN .NE. 2) GO TO 51
43 ITRAP = 0
44 NCONT = NCONT - 1
45 GO TO 100
51 IF (ITRAN) 40,60,52
52 IF (ITRAN) 40,60,52
53 TEST IF ITRAP = 1
54 IF (ITRAN) 90,60,52
55 IF (ITRAN) 90,60,52
56 IF (ITRAN) 100,100,53
57 IF (ITRAN) 100,100,53
58 IF (ITRAN) 100,100,53
59 IF (ITRAN) 100,100,53
60 IF (ITRAN) 100,100,53
61 IF (ITRAN) 100,100,53
62 IF (ITRAN) 100,100,53
63 IF (ITRAN) 100,100,53
64 IF (ITRAN) 100,100,53
65 IF (ITRAN) 100,100,53
66 IF (ITRAN) 100,100,53
67 IF (ITRAN) 100,100,53
68 IF (ITRAN) 100,100,53
69 IF (ITRAN) 100,100,53
70 IF (ITRAN) 100,100,53
71 IF (ITRAN) 100,100,53
72 IF (ITRAN) 100,100,53
73 IF (ITRAN) 100,100,53
74 IF (ITRAN) 100,100,53
75 IF (ITRAN) 100,100,53
76 IF (ITRAN) 100,100,53
77 IF (ITRAN) 100,100,53
78 IF (ITRAN) 100,100,53
79 IF (ITRAN) 100,100,53
80 IF (ITRAN) 100,100,53
81 IF (ITRAN) 100,100,53
82 IF (ITRAN) 100,100,53
83 IF (ITRAN) 100,100,53
84 IF (ITRAN) 100,100,53
85 IF (ITRAN) 100,100,53
86 IF (ITRAN) 100,100,53
87 IF (ITRAN) 100,100,53
88 IF (ITRAN) 100,100,53
89 IF (ITRAN) 100,100,53
90 IF (ITRAN) 100,100,53
91 IF (ITRAN) 100,100,53
92 IF (ITRAN) 100,100,53
93 IF (ITRAN) 100,100,53
94 IF (ITRAN) 100,100,53
95 IF (ITRAN) 100,100,53
96 IF (ITRAN) 100,100,53
97 IF (ITRAN) 100,100,53
98 IF (ITRAN) 100,100,53
99 IF (ITRAN) 100,100,53
100 3TPY = 1
101 NR = 0
102 RETURN
103 NCONT = NCONT + 1
104 RETURN
105 END

Approved for Public Release
COMMON
C
SNIC2245

SNIC2240

SNIC2250

SNIC2255

SNIC2260

SNIC2265

SNIC2270

SNIC2280

SNIC2290

SNIC2295

SNIC2300

SNIC2305

SNIC2310

SNIC2315

SNIC2320

SNIC2325

SNIC2330

SNIC2335

SNIC2340

SNIC2345

SNIC2350

SNIC2355

SNIC2360

SNIC2365

SNIC2370

SNIC2375

SNIC2380

SNIC2385

SNIC2390

SNIC2395
SUBROUTINE FMAC(X,Y,A,B,L,TAU,DELCP,DDXCP,Q3YCP)
 C
 SUBROUTINE COMPUTES DELTA CP
 C
 CS= COS(AL)
 CS1=1./SRT(1.+((1.-A)##2)+(CS##2))
 CS2=1./SRT(1.+((1.-B)##2)+(CS##2))
 TA= SIN(AL)/CS
 TAI=1.-TA
 TAE=1.-TA
 EPS=TAU/(E.##8*1.4145927##6*AL/CS)
 EPS1= EPS##CS/CS1
 EPS2= EPS##CS/CS2
 EPS= 1.0 - EPS
 EPS1= EPS1 + 1.0
 EPS2= EPS2 + 1.0
 1 = ABS(TAI)
 S1=ABS(A)/TA1
 S2=ABS(B)/TA1
 Q1=ABS(Y-5)
 Q3=ABS(Y+5)
 Q4=ABS(Y-5)
 Q5=ABS(Y+5)
 Q6=ABS(Y-5)
 FAC1=2.##45/TA1
 FAC2=2.##45/TAE
 QCP=-(EPS+EPS1+EPS2+.5##EPS)
 ECP1=QCP/(1.##0+EPS)-1.##0+EPS1/(1.##0+EPS)
 ECP2=QCP/(1.##0+EPS)-1.##0+EPS2/(1.##0+EPS)
 IF (SI) 10,10,10
 10 DLECP= DLCP
 DDXCP= DDX
 YYCP= YY
 9 DLECP= DEL+ DEL1
 DDXCP= DDX+ DDX1
 YYCP= YY+ YY1
 GO TO 90
 5 DLECP= FacA1(1.##0+EPS1(1.##0+EPS1)-1.##0+EPS1) + EPS1 /TA1
 DDXCP= DDX1(1.##0+EPS1(1.##0+EPS1)-1.##0+EPS1) + EPS1
 IF (SI) 20,20,30
 20 DELCP= DEL+ DEL1
 DDXCP= DDX+ DDX1
 YYCP= YY+ YY1
 GO TO 90
 30 DELCP= FAC2(1.##0+EPS2(1.##0+EPS2)-1.##0+EPS2) + EPS2 /TA2
 DDXCP= DDX2(1.##0+EPS2(1.##0+EPS2)-1.##0+EPS2) + EPS2
 DELCP = DEL+ DEL1 + DEL2
 DDXCP= DDX+ DDX1 + DDX2

45
SUBROUTINE FN41(FX,FY,FHS,FHSS,FHSSS,FHYSS)
C SUBROUTINE COMPUTES MACH NO, MX, HY.
C FX = X FY = Y
C FHS = MACH NO. FHSS = PARTIAL M W/RESP TO Y
C FHSSS = PARTIAL M W/RESP TO Y
C C6 = FOR MACH 18+ M(CH(2))*EXP(-CH(1)*Y+CH(5))*CH(3)*X+CH(4)*X**2*
C CH(5)*X**2+CH(10)*Y**4)
C COMMON
C #/CH/ CH(6)
C
EQUIVALENCE
1 1 C,CH(1)), (FHY,FHS,CH(2)), (A1,CH(3)), (A2,CH(4))
2 (A3,CH(5)), (A4,CH(6))
3 (FX,EX,0.) GO TO 5
ARG1=(-CH(2)*FX)/FX
ARG1 = ABS(ARG1)
IF (ABS(ARG1) .GE. 50.) GO TO 5
ARG2 = ABSFX+ARG1FX+ARG2FX+ANG4FX**4
C ARG3 = A1+ 2. * A2*FX
ARG4 = 2.4354*Y + .4944Y**4
EX = EXP(ARG1)
GO TO 10
1 FHS = FMO
FHYSS = 0.
RETURN
10 FHYSS = FMO * EX* ARG2
FHYSS = EX((ARG4/FX)* ARG2 -ARG3)
PAUL= 2.4354*FX
FHYSS= EX((PAUL*ARG2 + ARG4)
RETURN
END

COMMON
A/C(X/CM(6)),
DIMENSION FX(1),FY(1)
IER = 1
C=CM(1),
FH0=CM(2),
A1 =CM(3),
A2 =CM(4),
A3 =CM(5),
A4 =CM(6)

C FIRST COMPUTE X WHEN T=0
ARG = A1#2 -4.*A2#2(FH0-1.)
IF(ARG .GE. 0.0) GO TO 2
1 IER = 2
RETURN
2 FX(1) = (1.5/A2) #(-1.0+SORT(ARG))
FY(1) = 0.
IF(FX(1) .LT. 0.0) GO TO 1
IF(FX(1) .LT. 0.0) GO TO 4
FX(1) =(-.5/A2) #(-A1-SORT(ARG))
IF(FX(1) .LT. 0.0) GO TO 1
IF(FX(1) .GE. 1.0) GO TO 1
4 IER = 2
10 NCR = NCR - 1
FX(NCR) = FX(NCR)+.01
X = FX(NCR)
R = C/X
S = X(A1+A2#2)
TO = FY(NCR)#2
TH1 = A3#2+R
TH2 = 2.0*A4+R*R
TH3 = R*A4
TH4 = 2.0*A4+R*R#2+2.0*A3
TH5 = R#(R*A3-4.0*A4)

48
THS = .F. IMAX = 1
12 ET = EXP(-R4/D0)
FT = ET(1+B+A3#8T0+A6#8T0)+PM/.5
FPT = .ET/THS(THS+TM#8T0+T8#8T0)/D02
HO = -F/FT
IF(FT+FPT) .GE. 0.0 Go To 14
HO = .75#4HO
14 To D0=HO
IMAX = IMAX + 1
1000 Format (20,4E10) Computation for sonic line will not converge, HO = E
116.8)
IF(IMAX .LT. 10) Go To 18
WRITE (6,1000) HO
GO To 18
18 IF(HO .GT. .9999) Go To 12
IF(INCR .GE. NH) Go To 20
IF(FLY(INCR) .GE. 1.0) Go To 20
IF(FLY(INCR) .GE. 1.0) Go To 20
NCR = NCR + 1
GO To 10
20 Return
END
$16FTC POT

SUBROUTINE POT (NFR,FR,F)
COMMON
**/XYZ/ SX(101),SXP(101),SY(101),SYP(101),ML(41),TIM(101)
**/CH/ CN(8)
**/CNT/ IVAR,NCNT,ISORS,ISR,ITRAP,NMAX
**/SOURCE/ X0(20),Y0(20)
**/GPS/ EL,EZ,FW,NMAX
**/ANN/ M55,MLCS,NLLS

C

DIMENSION FR(101),F(101,2,10)
CON=.-25./3.14159
X5 =X0(N55)
Y5 =Y0(N55)
DO 100 I=1,NCNT
X =SX(N)
Y =SY(N)
T = TIM(N)
RBAR = SYP(D)
10 DO 30 NF=1,NFR
IF (RBAR) 12,14,16
2 P (N1,NF) =D.
3 P (N2,NF) =D.
GO TO 30
14 IF (RBAR LE. 0.0) GO TO 14
FACT = CON/RBAR
AR = FR(NF)2T
C0 = COS(AR)
ST = SIN(AR)
P (N1,NF) = CON*FACT
P (N2,NF) = -ST*FACT
GO TO 30
100 CONTINUE
RETURN
END

50

Approved for Public Release
SUBROUTINE RK53 (DERIV, CNTRL, Y, DY, ATABL, RTABL, WORK, X, DX, N, IFVD, IERROR)

EXTERNAL DERIV, CNTRL
INTEGER N, IERROR, IERR
LOGICAL IFVD, IBKP
REAL Y, DY, ATABL(N), RTABL(N), DX
DIMENSION Y(N), DY(N), ATABL(N), RTABL(N)

DIMENSION WORK(40)

CALL RKINT (DERIV, CNTRL, Y, DY, ATABL, RTABL, WORK, X, DX, N, IFVD, IBKP, IERROR)
"RETURN"
END

SUBROUTINE RKINT (CALLED BY RK53, RUNGE-KUTTA, F 4, V13, SHARE DZATFRE63

EXTERNAL DERIV, CNTRL
INTEGER M, N, IERROR, IERR
LOGICAL IFVD, IBKP
REAL REALY, OY, ATABL(N), RTABL(N), DELTAX, X, XLAST
DIMENSION REALY(M), OY(M), ATABL(N), RTABL(N), DELTAY(N)

10 IERROR = 0
10 DELTAX = DX
X = REALY
DO 20 I = 1, N
20 Y(I) = REALY(I)
CALL DERIV
GO TO 200
10 IF (DX .EQ. 0.) GO TO 230
DELTAX = DX
DXZ = DXZ.
DX4 = DX4.
ZER0 = X
DO 40 I = 1, N
ZER0(I) = Y(I)
40 OYZERO(I) = OY(I)
DO 110 I = 1, Z
XHALF = X
X = X + 0.5
REALX = X
DO 50 I = 1, N
DELTAY(I) = OY(I) + 0.5
YHALF(I) = Y(I)
Y(I) = Y(I) + DELTAY(I)
50 REALY(I) = Y(I)
50}
CALL DERIV
DO 80 I=1,N
DELTAY(I) = DELTAY(I) + DY(I) * DXZ
Y(I) = YHALF(I) + DY(I) * DX4
80 REALY(I) = Y(I)
CALL DERIV
X = YHALF4 * DXZ
REALX = X
DO 70 I=1,N
DELTAY(I) = DELTAY(I) + DY(I) * DXZ
Y(I) = YHALF(I) + DY(I) * DX2
70 REALY(I) = Y(I)
CALL DERIV
DO 60 I=1,N
DELTAY(I) = (DELTAY(I) + DY(I) * DX4) / 5.
Y(I) = YHALF(I) - DELTAY(I)
60 REALY(I) = Y(I)
CALL DERIV
GO TO (90,110), I
90 DO 100 I=1,N
100 DYHALF(I) = DY(I)
110 CONTINUE
IF (IVOF) GO TO 200
ERRMAX = 0
DO 120 I=1,N
ERR = ETAOL(I) + ABS(RTAOL(I) * REALY(I))
120 ERRMAX = MAX(ERRMAX, ABS (SR - REALY(I) - SNGL(YZERO(I)))) / ERR)
IF (ERRMAX < .75) 130, 170, 160
130 IF (ERRMAX < .75) 140, 200, 170
140 IF (ERRMAX < .75) 150, 200, 200
150 DX = DX / 1.5848932
GO TO 200
160 DX = DX / 1.5848932
IF (.NOT. (EXP)) GO TO 180
ERRMAX = ERRMAX/10.
180 IF (ERRMAX < .75) 170, 180
GO TO 180
170 DX = DX / 1.5848932
GO TO 200
190 X = XZERO
DO 200 I=1,N
Y(I) = YZERO(I)
200 NTRY = NTRY + 1
CALL CTRL (NTRY)
GO TO (190, 210, 180, 190), NTRY
210 RETURN
220 IERR = 1
 RETURN
230 IERR = -1
 RETURN
END
<table>
<thead>
<tr>
<th>NUMBER</th>
<th>IDENTIFICATION</th>
<th>DESCRIPTION</th>
<th>DO NOT KEY PUNCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>RESOURCE (NUMBER OF SOURCE POINTS, 20 MAXIMUM)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>MLA (NUMBER OF A PER SOURCE, 40 MAXIMUM)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>NPL (NUMBER OF PLANFORM COORDINATES, 8 MAXIMUM)</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>NMAX (LIMIT NUMBER OF POINTS PER PLOT, 100 MAX)</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>NF (NUMBER OF ASSUMED FREQUENCIES, 10 MAXIMUM)</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

1. FALSE
2. TRUE

IPFD: LOGICAL WORDS - VARIABLE INTERVAL MODE

IS recommended. FIXED INTERVAL IF IPFD = TRUE.
<table>
<thead>
<tr>
<th>DECK NO</th>
<th>NUMBER</th>
<th>IDENTIFICATION</th>
<th>DESCRIPTION</th>
<th>DO NOT KEY PUNCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.85</td>
<td>+ 0.1</td>
<td>CM(1) COEFFICIENTS IN MACH NUMBER EQUATION</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>9.579</td>
<td>+ 0.0</td>
<td>CM(2) M = CM(2) + EXP[-CM(1)Y**2/W]</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>1.266</td>
<td>+ 0.0</td>
<td>(CM(3)X + CM(4)X2 + CM(5)X3) ** 2</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>6.305</td>
<td>+ 0.0</td>
<td>+ CM(6) Y**2</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>7.901</td>
<td>+ 0.0</td>
<td>THE COEFFICIENTS WERE DETERMINED BY A</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>8.915</td>
<td>+ 0.0</td>
<td>CM(6) LEAST-SQUARE PROCEDURE.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.0</td>
<td>- 0.1</td>
<td>IE INITIAL VALUE OF INCREMENT</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1.0</td>
<td>- 0.1</td>
<td>KL TEST WORD FOR TRAPPING SIGNAL ON LOCAL M.L.</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1.0</td>
<td>- 0.2</td>
<td>KL TEST WORD FOR STOPPING TRAPPED SIGNAL ON</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>4.663</td>
<td>+ 0.0</td>
<td>Y2 SONIC LINE</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td>YMAX NORMALIZED SEMI-SPAN</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FORTRAN FIXED 10 DIGIT DECIMAL DATA

<table>
<thead>
<tr>
<th>DECK NO.</th>
<th>NUMBER</th>
<th>IDENTIFICATION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>- 0 4</td>
<td>ATAIL(1) ATAIL AND TABL DETERMINE THE ACCURACY</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>- 0 4</td>
<td>ATAIL(2) REQUIREMENTS FOR DECR uRISING OR IN-</td>
</tr>
<tr>
<td>77</td>
<td>1</td>
<td>- 0 4</td>
<td>ATAIL(3) CRADIE THE INTERVAL IN THE VARIABLE</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>- 0 3 72</td>
<td>ATAIL(4) INTERVAL MODE.</td>
</tr>
<tr>
<td>61</td>
<td>1</td>
<td>- 0 3</td>
<td>ATAIL(1)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>- 0 3</td>
<td>ATAIL(2)</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>- 0 3</td>
<td>ATAIL(3)</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>- 0 3</td>
<td>ATAIL(4)</td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>+ 0 3</td>
<td>BLX(1) PLANAR COORDINATES, LIST ALL CORNERS</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>+ 0 3</td>
<td>BLX(1) STARTING FROM LEFT ALONG LEADING EDGE</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>+ 0 0</td>
<td>BLX(2) TOWARD THE RIGHT, AND AGAIN STARTING</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>+ 0 0</td>
<td>BLX(2) AT LEFT, ALONG TRAILING EDGE TOWARD</td>
</tr>
<tr>
<td>61</td>
<td>1</td>
<td>+ 0 1 72</td>
<td>BLX(3) THE RIGHT. ALL GEOMETRY IS NORMALIZED</td>
</tr>
<tr>
<td>44</td>
<td>4 6 6 3 1</td>
<td>+ 0 0</td>
<td>BLX(3) on b</td>
</tr>
</tbody>
</table>

Note: The table is not fully readable due to the quality of the image.
<table>
<thead>
<tr>
<th>DECK NO.</th>
<th>PROGRAMMER</th>
<th>DATE</th>
<th>PAGE</th>
<th>JOB NO.</th>
<th>NUMBER</th>
<th>IDENTIFICATION</th>
<th>DESCRIPTION</th>
<th>DO NOT KEY PUNCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>73</td>
<td></td>
<td>1</td>
<td>+0.1</td>
<td>FIX(4)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>73</td>
<td></td>
<td>4.6.6.3.2</td>
<td>+0.0</td>
<td>FIX(4)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>73</td>
<td></td>
<td>1</td>
<td>+0.1</td>
<td>FIX(5)</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>73</td>
<td></td>
<td>4.6.6.3.1</td>
<td>+0.0</td>
<td>FIX(5)</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td></td>
<td>73</td>
<td></td>
<td>73</td>
<td>60</td>
<td>CINF REMOTE SPD. OF SPD. IN 10 UNITS/SEC.</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td></td>
<td>73</td>
<td></td>
<td>4.6.6.3.2</td>
<td>+0.1</td>
<td>CINF REMOTE MACH NUMBER</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td>73</td>
<td></td>
<td>1</td>
<td>+0.1</td>
<td>PMAX MACH NUMBER</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td></td>
<td></td>
<td>73</td>
<td></td>
<td>0.2</td>
<td>+0.0</td>
<td>TAU MAXIMUM THICKNESS RATIO (T/C)</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
<td></td>
<td>73</td>
<td></td>
<td>4.6.6.3.1</td>
<td>+0.0</td>
<td>THIN TANGENT SBC-AXIS ANGLE</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td>73</td>
<td></td>
<td>73</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
<td></td>
<td>73</td>
<td></td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>73</td>
<td></td>
<td>1</td>
<td>+0.2</td>
<td>FREQ(1) FREQUENCIES, FOR COMPUTATION</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>73</td>
<td></td>
<td>2</td>
<td>+0.2</td>
<td>FREQ(2) OF POTENTIALS, (RADIANS/SEC)</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>73</td>
<td></td>
<td>0</td>
<td>+0.0</td>
<td>FREQ(3F)</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td>73</td>
<td></td>
<td>0</td>
<td>+0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td></td>
<td>73</td>
<td></td>
<td>73</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
<td></td>
<td>73</td>
<td></td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Y</td>
<td>X-PRIME</td>
<td>R-BAR</td>
<td>TIME</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.18000000E 00</td>
<td>0.00000000E+38</td>
<td>0.21141810E 00</td>
<td>0.00000000E-38</td>
<td>0.00000000E-38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.18424259E 00</td>
<td>0.20000000E-01</td>
<td>0.21257251E 00</td>
<td>0.72580551E-02</td>
<td>0.30412277E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.19096695E 00</td>
<td>0.51691064E-01</td>
<td>0.21112035E 00</td>
<td>0.18791161E-01</td>
<td>0.99172437E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20135082E 00</td>
<td>0.10191058E 00</td>
<td>0.20083333E 00</td>
<td>0.37251900E-01</td>
<td>0.19553514E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20530157E 00</td>
<td>0.12189522E 00</td>
<td>0.19445196E 00</td>
<td>0.44702658E-01</td>
<td>0.23404072E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20413295E 00</td>
<td>0.14148787E 00</td>
<td>0.19213422E 00</td>
<td>0.52104825E-01</td>
<td>0.27246191E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.21302804E 00</td>
<td>0.16187273E 00</td>
<td>0.19647354E 00</td>
<td>0.59213898E-01</td>
<td>0.34281433E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.21706066E 00</td>
<td>0.18158799E 00</td>
<td>0.20163166E 00</td>
<td>0.66172495E-01</td>
<td>0.35289611E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.22350139E 00</td>
<td>0.21352566E 00</td>
<td>0.20416290E 00</td>
<td>0.77123095E-01</td>
<td>0.41616165E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.23413963E 00</td>
<td>0.24370616E 00</td>
<td>0.21631019E 00</td>
<td>0.94319346E-01</td>
<td>0.51590675E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25178554E 00</td>
<td>0.33321166E 00</td>
<td>0.22869016E 00</td>
<td>0.12128799E 00</td>
<td>0.67289645E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.28126884E 00</td>
<td>0.46922266E 00</td>
<td>0.24104052E 00</td>
<td>0.16353034E 00</td>
<td>0.39171490E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Velocity Potentials Along a Ray Path for a Source at

\(\Phi_0 = 0.180000000 \text{ E} \)

\(\tilde{\Phi}_0 = 0.000000000 \text{ E} \)

\(\lambda = 0.57119817 \text{ E} \)

Alternating Real and Imaginary

<table>
<thead>
<tr>
<th>(\omega) = 0.100000000E 02</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.209531E 01 0.413009E 00 -0.173162E 01 0.418235E 00 -0.147071E 01 0.411726E 00</td>
</tr>
<tr>
<td>-0.127668E 01 0.112855E 00 -0.112449E 01 0.415620E 00 -0.453756E 00 0.417138E 00</td>
</tr>
<tr>
<td>-0.339892E 00 0.415621E 00 -0.513086E 00 0.408919E 00 -0.255125E 00 0.386914E 00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\omega) = 0.200000000E 02</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.197475E 01 0.114201E 00 -0.158267E 01 0.803160E 00 -0.130527E 01 0.792945E 00</td>
</tr>
<tr>
<td>-0.108936E 01 0.786997E 00 -0.915255E 00 0.740015E 00 -0.694583E 00 0.753032E 00</td>
</tr>
<tr>
<td>-0.433042E 00 0.724092E 00 -0.146383E 00 0.639346E 00 -0.128649E 00 0.469308E 00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\omega) = 0.000000000E-38</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.213601E 01 0.000000E-38 -0.176015E 01 0.000000E-38 -0.152726E 01 0.000000E-38</td>
</tr>
<tr>
<td>-0.136300E 01 0.000000E-38 -0.120255E 01 0.000000E-38 -0.103182E 01 0.000000E-38</td>
</tr>
<tr>
<td>-0.84303E 00 0.000000E-38 -0.656104E 00 0.000000E-38 -0.486222E 00 0.000000E-38</td>
</tr>
</tbody>
</table>
APPENDIX III. Application to the Boundary Value Problem

A procedure that may be used to match the tangential flow condition on a wing surface is, in principle, the same as that employed by Holenich in the box method for uniform sonic flow (Reference 3). The velocity potential at a field point \mathbf{x} due to a doublet sheet in its zone of influence, is

$$\phi(x,y,z) = \frac{2}{\pi} \int_{\delta_0} \phi(\theta) \delta_0(x-\mathbf{e},y-\mathbf{e},z) d\eta$$

where $\phi(\theta)$ is the velocity potential discontinuity through the doublet sheet over the region $\delta + \delta_0$ (the surface and its wake), and

$$\delta_0(x-\mathbf{e},y-\mathbf{e},z) = \frac{1}{2\pi R} \sum_{n=1}^{N} e^{-i2\pi n \eta}$$

where $R = \sqrt{(x-\mathbf{e})^2 + [(y-\mathbf{e})^2 + z^2]}$

and N represents the number of times the wave front passes the field point. In uniform subsonic flow N equals one, in uniform supersonic flow it equals two, and in the limiting case of uniform sonic flow it equals one. As discussed previously, in uniform sonic flow the stationary portion of the perturbation wave front is not augmented by high frequency signals that follow it; instead, the pressure discontinuity is dissipated by these.

When the local flow in a non-uniform flow field is sonic the wave front gradually becomes stationary and is dissipated. Rays of this type are shown in Figures 3, 12, and 13. In certain regions of non-uniform flow a wave front may pass field points more than twice as shown in Figures 6, 7, 9, 10, and 12. These regions may be in the region of subsonic flow or in supersonic flow. Multiple crossings normally occur on receding portions of the wave front. Ray lines on advancing portions normally pass over the trailing edge before they cross. In these regions of multiple crossings of the wave front, care must be taken to establish an accurate value of N, and of each of the corresponding γ_n's, $n = 1, 2, \ldots, N$. A computer program that may be used to do this is contained herein. Figures 11 and 13 show that in some regions of both subsonic and supersonic flow even the receding ray lines do not cross. All of Figures 6 through 13 show that once a ray crosses the transition region at the edge of the planform it does not return to the wing region. This characteristic is important since when a doublet solution is employed a ray trace can be ignored once it reaches an edge that is not adjacent to the wing.

61
The next step in the procedure is to define a grid of square boxes over the region $S + W$, and assume that $\psi(y_1\eta)$ is constant over the area of each box. For this to be a valid assumption as may as 50 boxes along the root chord may be required. The upwash adjacent to the upper surface may be written

$$\psi(x, y, z) = \lim_{\eta \to z} \frac{\psi(x, y, z)}{\tau}$$

or,

$$\psi(x_1, y_1, z) = \sum_{i=1}^{N} \sum_{j=1}^{M} \psi(x_1 - r_i, y_1 - n) \delta \eta$$ \hspace{1cm} (41)

i.e., the upwash at (x_1, y_1) equals the summation (over all boxes $B_i \times \eta$) of products of the constant velocity potential discontinuities and their downwash influence coefficients. The latter are represented by the double integral of the kernel ψ over the areas of the boxes. The limits of integration and $\delta \psi$ of Equation (39) are not functions of z, so from Equation (40) we get

$$\psi(x_1 - r_i, y_1 - n) = \frac{1}{2 \pi i} \psi(x_1, y_1, z) \frac{\partial}{\partial n} \int_{-\infty}^{\infty} \left(\frac{e^{-i\omega\delta \eta}}{\omega} \right) d\omega$$ \hspace{1cm} (42)

At this point it is theorized that for non-uniform flow around a nearly planar surface the variation in signal transmission time with distance normal to the surface is approximately equal to the variation in uniform flow, i.e.,

$$\frac{d\tau}{dz} = \frac{\partial}{\partial n} \frac{\tau(x, z)}{C(W-1)}$$

or, performing the differentiation

$$\frac{d\tau}{dz} = \frac{\partial}{\partial n} \frac{\tau(x, z)}{C(W-1)}$$ \hspace{1cm} (43)

where the upper sign refers to the advancing portion of the wave front and the lower sign to the receding portion. \(C\) is the speed of sound. Making use of equation (40) when taking the derivative in equation (42),

$$\psi(x_1 - r_i, y_1 - n) = \frac{-1}{2\pi i} \frac{\varphi(x_1, y_1, z)}{C(W-1)} \int_{-\infty}^{\infty} e^{-i\omega\delta \eta} \frac{1}{\omega^3} d\omega$$ \hspace{1cm} (44)

The φ_i's are those obtained by tracing ray paths through the non-uniform flow field.

62
One way in which Equation (44) may be evaluated and integrated is as follows: Say for nine values of \((s, t)\) on each sending box, the values of the kernel at the center of the receiving box \((x', y')\) are evaluated.

Since the ray paths are not known in advance, each of these values must be interpolated from values in its neighborhood. It is then necessary to evaluate the integral in Equation (41) given the values of the integrand at nine points in the region of integration.

The unknowns in Equation (41) are the \(\mathcal{Q}_{11}^{ij}\)'s. When the center of a receiving box \((x', y')\) lies in the subsonic flow region it lies in the zone of influence of every other point in the subsonic region and may lie in the zone of influence of a small portion of the supersonic region (Figure 9). All velocity potentials in zones of mutual influence must be determined simultaneously. Once velocity potentials have been established that meet the tangential flow conditions on the surface and the zero pressure difference condition on the wake they may be fitted with analytical expressions that have the proper edge behavior. Using these expressions, local oscillatory pressures and generalized forces may be obtained in the way outlined in Reference 1.
The methods have been outlined in detail, and one of them has been mechanized, for calculating acoustic ray paths emanating from any point in a non-uniform transonic flow field surrounding a wing. It gives the ray path, and the time, for the minimum time of travel from the acoustic source point to the field point. The resulting velocity potential is also computed.

It was necessary to establish an accurate representation of the flow characteristics in the field surrounding the wing. Some ray lines travel over the planform and into the surrounding flow field. It was established that once off the planform they do not return.

Available methods predict phase lag based on the assumption that acoustic rays travel in straight lines. The results of this study show this to be a very poor approximation at transonic speeds. Therefore, it is recommended that the method presented in this report be fully developed for the purpose of calculating generalized forces on wings in harmonic motion at transonic speeds. A computer program that would predict these phase lags with reasonable accuracy, and the corresponding flutter characteristics and unsteady aerodynamic loads on a wing responding to externally applied forces, such as gusts, would fill an important gap in the available technology.
Unsteady Aerodynamics, Non-Uniform Transonic Flow, Velocity Potentials, Thickness Effects