AIRCRAFT GROUND-FLOTATION INVESTIGATION
PART VIII DATA REPORT ON TEST SECTION 7

W. BRABSON and W. HILL, JR.
U. S. ARMY ENGINEER WATERWAYS EXPERIMENT STATION

*** Export controls have been removed ***

This document is subject to special export controls and each transmission to foreign governments or foreign nationals may be made only with prior approval of the Air Force Flight Dynamics Laboratory (AFDML), Wright-Patterson Air Force Base, Ohio 45433.

Approved for Public Release
The investigation described herein constitutes one phase of studies conducted during 1954 and 1955 at the U. S. Army Engineer Waterways Ex-
periment Station (WES) under U. S. Air Force Project No. 410-A, MIB
No. 45-4-177, "Development of Landing Gear Design Criteria for the C-135S
Aircraft." (The C-135S is now designated C-5A.) This program was spon-
sored and directed by the Landing Gear Group, Air Force Flight Dynamics
Laboratory, Research and Technology Division, Mr. R. J. Parker, Project
Engineer.

These tests were conducted by personnel of the WES Flexible Pavement
Branch, Soils Division, under the general supervision of Messrs. W. J.
Turnbull, A. A. Maxwell, and E. G. Melvin, and the direct supervision of
Mr. D. N. Brown. Other personnel actively engaged in this study were
Ullery, Jr., A. J. Smith, Jr., and W. J. Hill, Jr. This report was pre-
pared by Messrs. Brabston and Hill.

Directors of WES during the conduct of this investigation and prep-
aration of this report were Col. Alex G. Sutton, Jr., CE, and Col. John B.
Oswalt, Jr., CE. Technical Director was Mr. J. B. Tiffany.

Publication of this technical documentary report does not constitute
Air Force approval of the report's findings or conclusions. It is pub-
lished only for the exchange and stimulation of ideas.

KENNETH E. DESBOS
Chief, Mechanical Branch
Vehicle Equipment Division
AF Flight Dynamics Laboratory

Approved for Public Release
ABSTRACT

This data report describes work undertaken as part of an overall program to develop ground-flotation criteria for the C-5A aircraft. A test section was constructed to a width adequate for four unsurfaced test lanes having approximately the same subgrade CBR values. Single-wheel traffic was applied to each lane using one of the following tire size and test load combinations: (a) a 56x16, 38-ply aircraft tire with 75,000-lb load; (b) a 25.0x-26, 30-ply aircraft tire with 25,000-lb load; (c) a 37-8x-16, 12-ply aircraft tire with 25,000-lb load; and (d) a 38x9.5, 18-ply aircraft tire with 19,000-lb load. Tire inflation pressure was 100 psi for all tires.

The information reported herein includes layout of the test lanes, characteristics and print dimensions of the load assembly tires, and data collected on soil strengths, surface deformations and deflections, and drawbar pull. The traffic-coverage level is given at which each test lane was considered failed.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECTION I: INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>SECTION II: DESCRIPTION OF TEST SECTION AND LOAD VEHICLE</td>
<td>2</td>
</tr>
<tr>
<td>Description of Test Section</td>
<td>2</td>
</tr>
<tr>
<td>Load Vehicle</td>
<td>2</td>
</tr>
<tr>
<td>SECTION III: APPLICATION OF TRAFFIC, FAILURE CRITERIA, AND DATA COLLECTED</td>
<td>3</td>
</tr>
<tr>
<td>Application of Traffic</td>
<td>3</td>
</tr>
<tr>
<td>Failure Criteria and Data Collected</td>
<td>3</td>
</tr>
<tr>
<td>SECTION IV: BEHAVIOR OF LANES UNDER TRAFFIC AND TEST RESULTS</td>
<td>5</td>
</tr>
<tr>
<td>Lane 13.</td>
<td>5</td>
</tr>
<tr>
<td>Lane 14.</td>
<td>5</td>
</tr>
<tr>
<td>Lane 15.</td>
<td>6</td>
</tr>
<tr>
<td>Lane 16.</td>
<td>7</td>
</tr>
<tr>
<td>SECTION V: PRINCIPAL FINDINGS</td>
<td>9</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS AND TABLES

Figure

1. Load vehicle used on lanes 13 and 14
 13
2. Load vehicle used on lanes 15 and 16
 13
3. Lane 13 prior to traffic
 14
4. Lane 13; general view showing transverse straightedge measurement at 70 coverages (failure)
 14
5. Lane 14 prior to traffic
 15
6. Lane 14; general view showing transverse straightedge measurement at 200 coverages (failure)
 15
7. Lane 15 prior to traffic
 16
8. Lane 15; general view showing transverse straightedge measurement at 100 coverages (failure)
 16
9. Lane 16 prior to traffic
 17
10. General view of lanes 16 after 32 coverages (failure)
 17
11. Layout of Test Section 7 and summary of test results
 18
12. Tire-print dimensions and tire characteristics
 19
13. Traffic distribution patterns
 20
14. Average cross-sectional deformations
 21
15. Permanent profile deformations
 22
16. Average total soil deflections
 23

Table

1. Summary of Traffic Data, Test Section 7
 11
2. Summary of CEM, Density, and Water Content Data, Test Section 7
 12
SUMMARY

Tests on Section 7 are one phase of a comprehensive research program to develop ground-degradation criteria for heavy cargo-type aircraft. Test Section 7 consisted of four similar traffic lanes (lanes 13, 14, 15, and 16), all of which were unsurfaced and constructed to approximately the same CBR value (Figure 11). The four test lanes were subjected to traffic by single-wheel tracking assemblies using a different tire size and test load combination on each lane. The following combinations of tire size and test load were used on lanes 13, 14, 15, and 16, respectively: (a) a 5x16, 32-ply aircraft tire with 20,000-lb load; (b) a 25.00-28, 30-ply aircraft tire with 25,000-lb load; (c) a 17x16, 32-ply aircraft tire with 25,000-lb load; and (d) a 9x20.5, 14-ply aircraft tire with 19,000-lb load. Inflation pressure for all tires was 100 psi.

The test lanes were trafficked to failure in accordance with the criteria designated in Part I of this report. Data were recorded throughout testing to give a behavior history of each lane. Using the test criteria mentioned above, it was possible to directly compare the effects of trafficking with the four assemblies. Basic performance data are summarized in the following paragraphs.

Lane 13

The lane was considered failed due to rutting at 70 coverages. The rated CBR of the lane was 9.2.

Lane 14

The lane was considered failed due to excessive transverse differential deformations at 200 coverages. The rated CBR of the lane was 7.8.

Lane 15

The lane was considered failed due to excessive transverse
differential deformations at 100 coverages. The rated CBR of the lane was 7.6.

Lane 16

The lane was considered failed due to rutting at 32 coverages. The rated CBR of the lane was 8.4.
The investigation reported herein is one phase of a comprehensive research program being conducted at the U. S. Army Engineer Waterways Experiment Station (WEES), Vicksburg, Miss., as part of U. S. Air Force Project No. 410-A, MTRR No. AS-AD-177, to develop ground-flotation criteria for the C-5A, a heavy cargo-type aircraft. Specifically, the tests reported herein were conducted to determine the effect of wheel size of single-wheel landing-gear assemblies on unsurfaced soils under similar conditions of loading.

Prosecution of this investigation consisted of constructing four similar test lanes and subjecting them to traffic of four single-wheel tracking assemblies, each consisting of a different size aircraft tire. Three of the lanes were trafficked with 25,000-lb loads and one was trafficked with a 12,000-lb load. Tire inflation pressure was 100 psi for all assemblies.

This report presents a description of the test section and wheel assemblies, and gives results of traffic. Equipment used, types of data and method of recording them, and general test criteria are explained and illustrated in Part I of this report.
SECTION II: DESCRIPTION OF TEST SECTION AND LOAD VEHICLE

Description of Test Section

Test Section 7 was constructed within a roofed area in order to allow control of the subgrade CBR (California Bearing Ratio) in the test lanes. Section 7 was located on the same site as Test Sections 3 and 5. The construction of Test Section 3 is described in Part IV of this report. The underlying subgrade was undisturbed by the two prior tests on the site so that in construction of Section 7 only the upper 18 in. of soil was excavated. The excavated area was backfilled to the original grade level in four compacted lifts with a heavy clay soil (turkshut; classified as CH according to the Unified Soil Classification System, WH-60D-610). The fill material used was a local clay with a plastic limit of 27, liquid limit of 58, and plasticity index of 31. Gradation and classification data for the subgrade material are given in Part I.

Four traffic lanes were constructed in the test section, having approximately the same subgrade CBR values. All lanes were unsurfaced.

Load Vehicle

The load vehicle used for trafficking lanes 13 and 14 is shown in figure 1. Load cart construction, details of linkage between the load compartment and prime mover, and method of applying load are explained in Part I. For both lanes, a single-wheel assembly was used with a load of 25,000 lb and tire inflation pressure of 100 psi. The assemblies consisted of a 56x16, 32-ply aircraft tire and a 25.00-28, 30-ply aircraft tire for lanes 13 and 14, respectively.

For trafficking lanes 15 and 16, the load vehicle shown in figure 2 was used with loads of 25,000 lb and 19,000 lb, respectively. For both lanes, a single-wheel assembly was used with tire inflation pressure of 100 psi. The assemblies consisted of a 17.00-16, 12-ply aircraft tire and a 34x9.5, 14-ply aircraft tire for lanes 15 and 16, respectively.

Tire-print data and pertinent tire characteristics for the wheel assemblies used on Section 7 are given in figure 12.
SECTION III: APPLICATION OF TRAFFIC, FAILURE CRITERIA, AND DATA COLLECTED

Application of Traffic

Traffic was applied to the test lanes in a nonuniform pattern with intensity of traffic being varied within each lane to produce three zones of approximately 100, 50, and 25 percent traffic coverage. Traffic was distributed within a traffic lane simulating as nearly as possible the bell-shaped traffic distribution curve which results from the wander of aircraft from the lane center line. The coverage levels referred to in the tables and text herein are the total number of coverages applied to the 100 percent coverage zone. The corresponding number of coverages applied to the outer traffic zones is proportional to the percentage factor for the respective zones, as shown in figure 13.

Failure Criteria and Data Collected

Failure criteria used in this investigation and descriptive terms used in presentation and discussion of data are presented in Part I. A general outline of types of data collected is given in the following paragraphs. Details on apparatus and procedure for obtaining specific measurements are given in Part I.

CRR, water content, and dry density

CRR, water content, and dry density of the subgrade were measured for each test lane prior to application of traffic, at intermediate coverage levels, and at failure. After traffic was concluded on a lane, a measure of subgrade strength termed "rated CRR" was determined. Rated CRR is generally the average CRR value obtained from all the determinations made in the top 0.2 in. of soil during the test life of a lane. In certain instances, extreme or irregular values may be ignored if the analyst decides that they are not properly representative.

Surface roughness, or differential deformation

Surface roughness, or differential deformation, measurements were made using a 10-ft straightedge at various traffic-coverage levels on all lanes. Rut depths were also measured on test lanes.

Deformations

Deformations, defined as permanent cumulative surface changes in cross section or profile of a lane, were charted by means of level readings at pertinent traffic-coverage levels.
Deflection

Deflection of the test surface under an individual static load of the tracking assembly was measured at various traffic-coverage levels on each lane. Level readings on the lane surface on each side of the load wheel and on a pin and cap device directly beneath the load wheel provided deflection data. Both total (for a single loading) and elastic (recoverable) deflections were measured.

Rolling resistance

Rolling resistance, or drawbar pull, measurements were performed with the load vehicle over each test lane at designated coverage levels. Three types of drawbar measurements were taken: (a) maximum force required to overcome static inertia and commence forward movement of the load cart, termed "initial DPP"; (b) average force required to maintain a constant speed once the load vehicle is in motion, termed "rolling DPP"; and (c) maximum force obtained during the constant speed run, termed "peak DPP."
SECTION IV: BEHAVIOR OF LANES UNDER TRAFFIC AND TEST RESULTS

Lane 13

Behavior of lane under traffic

Figure 3 shows lane 13 prior to traffic. The surface was moderately rutted at 20 coverages with rut depths averaging 1.5 in. Traffic was continued until the lane was considered failed due to rutting at 70 coverages (Figure 4). The rutted CBR of the lane was 9.0.

Test results

Results of trafficking lane 13 are summarized in table 1. Soil test data are given in table 2. Table 1 contains drawbar pull values for the load vehicle operated over an asphalt-paved strip for comparison with drawbar values recorded on the test lane. The following information was obtained from traffic tests on lane 13.

a. Roughness. Table 1 shows the progressive development of differential deformations and rut depths with traffic. At failure, both transverse and diagonal differential deformations averaged 3.69 in. Longitudinal deformations were relatively small, averaging 0.49 in. Rut depths averaged 3.31 in. at failure.

b. Deformation. Figure 2A shows the average cross-section deformations at 20 and 70 coverages. Center-line profiles at 20 and 70 coverages are plotted in figure 15.

c. Deflection. Average total soil deflections measured at 0, 20, and 70 coverages are plotted in figure 16. Total soil deflection at 70 coverages was about twice as great as in prior measurements. Elastic soil deflections increased similarly, as indicated in table 1.

d. Rolling resistance. Drawbar pull values measured at several coverage levels are shown in table 1. Drawbar values were small at all levels and increased only slightly with traffic. Minimum initial and peak drawbar values occurred at 20 coverages.

Lane 14

Behavior of lane under traffic

Figure 5 shows lane 14 prior to traffic. The test surface held up well under testing and traffic was continued to 200 coverages at which time the lane was considered failed due to excessive transverse differential.
deformations (figure 6). The rated CBR of the lane was 7.8.

Test results

Results of trafficking lane 14 are summarized in table 1. Soil test data are given in table 2. The following information was obtained from traffic tests on lane 14.

a. Roughness. Table 1 shows the differential deformations and rut depths measured at intervals during testing. Transverse and diagonal differential deformations exceeded in magnitude other deformation measurements and averaged 3.50 and 3.56 in., respectively, at failure. Due to the uniform subsidence in the lane cross section, rut depths were not great and averaged only 1.16 in. at failure.

b. Deformation. Average cross-section deformations at 20 and 200 coverages are plotted in figure 14. Center-line profiles are plotted in figure 15. Both figures illustrate the extensive subsidence that developed along the lane center line.

c. Deflection. Average total soil deflections measured at 0, 20, and 200 coverages are plotted in figure 16. Greatest total deflections occurred at 200 coverages. Elastic soil deflections, shown in table 1, registered no significant change with traffic.

d. Rolling resistance. Drawer pull values measured at 0, 20, and 200 coverages are shown in table 1. All drawer values decreased slightly between 20 and 200 coverages.

Lane 15

Behavior of lane under traffic

Figure 7 shows lane 15 prior to traffic. The lane was considered failed at 100 coverages primarily due to excessive transverse differential deformations (figure 8). The rated CBR of the lane was 7.8.

Test results

Results of trafficking lane 15 are summarized in table 1. Soil test data are given in table 2. The following information was obtained from traffic tests on lane 15.

a. Roughness. Table 1 shows differential deformations and rut depths measured at 20 and 100 coverages. Transverse and diagonal differential deformations were largest and averaged 3.62 and
3.83 in., respectively, at failure. Rutting was less severe, averaging 2.39 in. at failure.

b. Deformation. Average cross-section deformations are plotted in Figure 14 for 20 and 100 coverages. The same coverage levels are represented in the center-line plot in Figure 15.

c. Deflection. Average total soil deflections measured at 0, 20, and 100 coverages are plotted in Figure 16. Only small increases in total deflection resulted from traffic. Elastic soil deflections, shown in Table 1, increased slightly.

d. Rolling resistance. Drawbar pull values, shown in Table 1, increased progressively during testing with maximum values occurring at 100 coverages.

Lane 16

Behavior of lane under traffic

Figure 9 shows lane 16 prior to traffic. Severe ruts developed early in testing with high ridges forming between the ruts. It became impossible beyond 14 coverages to track the ridged strips, as the load wheel continually slipped sideways into an adjacent rut. The relative heights of the ridges increased with continued trafficking due to soil upheaval from the rutted areas. To obtain more representative roughness data, the influence of the ridge areas was de-emphasized by cutting access notches across the ridges so that for differential deformation measurements the ends of the 10-ft straightedge rested on the undisturbed surfaces outside the tracking lane. Figure 10 shows the lane after it was judged failed at 32 coverages. The rated CBR of the lane was 8.4.

Test results

Results of trafficking lane 16 are summarized in Table 1. Soil test data are given in Table 2. Table 1 contains drawbar pull values for the load vehicle operated over an asphalt strip for comparison with drawbar values recorded on the test lane. The following information was obtained from traffic tests on lane 16.

a. Roughness. Table 1 shows differential deformations and rut depths at 20 and 32 coverages. Transverse and diagonal differential deformations exceeded rut depth measurements, averaging 3.22 and 3.16 in., respectively, at failure. Rut depths averaged 2.07 in.

b. Deformation. Average cross-section deformations measured at 20 and 32 coverages are plotted in Figure 14. The extremely rough cross section at 32 coverages reflects the combination
of ridges and ruts developed in the lane. Profile plots in figure 13 show the irregular grade that developed from uneven longitudinal settlement.

2. Deflection. Average total soil deflections measured at 0, 20, and 32 coverages are plotted in figure 15. Measurements at 0 and 20 coverages were identical and exceeded those at 32 coverages. Elastic soil deflections, shown in table 1, did not change with traffic.

3. Rolling resistance. Drawbar pull values, shown in table 1, increased steadily with traffic and reached a maximum at 32 coverages.
SECTION V: PRINCIPAL FINDINGS

From the foregoing discussion, the principal findings relating to load, wheel assembly, tire pressure, and traffic coverages are as follows:

<table>
<thead>
<tr>
<th>Load, Wheel Assembly, and Tire Pressure</th>
<th>Subgrade CBR*</th>
<th>Coverages at Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>25,000-lb load; single-wheel assembly; 56x16, 32-ply tire at 100-psi inflation pressure</td>
<td>9.2</td>
<td>70</td>
</tr>
<tr>
<td>25,000-lb load; single-wheel assembly; 25.00-28, 30-ply tire at 100-psi inflation pressure</td>
<td>7.8</td>
<td>200</td>
</tr>
<tr>
<td>25,000-lb load; single-wheel assembly; 27.00-16, 12-ply tire at 100-psi inflation pressure</td>
<td>7.8</td>
<td>100</td>
</tr>
<tr>
<td>19,000-lb load; single-wheel assembly; 38x9.9, 18-ply tire at 100-psi inflation pressure</td>
<td>8.4</td>
<td>32</td>
</tr>
</tbody>
</table>

* All test lanes were unsurfaced.
<table>
<thead>
<tr>
<th>Test Lane No.</th>
<th>Type</th>
<th>Size</th>
<th>Coverages</th>
<th>Rated</th>
<th>Transverse</th>
<th>Diagonal</th>
<th>Running</th>
<th>Transverse All</th>
<th>Elastic</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Unsurfaced</td>
<td>12ply</td>
<td>5.6x16</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.9</td>
</tr>
<tr>
<td>25</td>
<td>Asphalt strip</td>
<td>32ply</td>
<td>5.6x16</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>25</td>
<td>Unsurfaced</td>
<td>30ply</td>
<td>25.00-65</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.8</td>
</tr>
<tr>
<td>25</td>
<td>Unsurfaced</td>
<td>30ply</td>
<td>17.00-15</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.1</td>
</tr>
<tr>
<td>16</td>
<td>Unsurfaced</td>
<td>24ply</td>
<td>14x9.5</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.3</td>
</tr>
<tr>
<td>16</td>
<td>Asphalt strip</td>
<td>14ply</td>
<td>14x9.5</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.1</td>
</tr>
</tbody>
</table>

Note: Single-wheel loading and 120 psi were inflation pressure were used in all tests.
<table>
<thead>
<tr>
<th>Test Lane No.</th>
<th>Coverage</th>
<th>Depth (in.)</th>
<th>CBR</th>
<th>Water Content (%)</th>
<th>Density (lb/cu ft)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>0</td>
<td>6</td>
<td>26.3</td>
<td>19.1</td>
<td>94.1</td>
<td>Lane failed due to rutting at 70 coverages</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>9</td>
<td>22.6</td>
<td>19.6</td>
<td>96.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>9</td>
<td>25.1</td>
<td>96.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>6</td>
<td>27.5</td>
<td>94.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>0</td>
<td>7</td>
<td>26.4</td>
<td>95.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>9</td>
<td>23.2</td>
<td>95.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>15</td>
<td>23.8</td>
<td>97.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>11</td>
<td>25.5</td>
<td>94.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>6</td>
<td>26.3</td>
<td>94.1</td>
<td></td>
<td>Lane failed due to excessive deformations at 200 coverages</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>9</td>
<td>22.6</td>
<td>92.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>9</td>
<td>25.1</td>
<td>96.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>6</td>
<td>27.5</td>
<td>94.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>0</td>
<td>6</td>
<td>26.9</td>
<td>96.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8</td>
<td>22.8</td>
<td>96.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>9</td>
<td>26.4</td>
<td>95.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>10</td>
<td>26.0</td>
<td>95.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>7</td>
<td>23.8</td>
<td>93.4</td>
<td></td>
<td>Lane failed due to excessive deformations at 100 coverages</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>9</td>
<td>23.5</td>
<td>90.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>8</td>
<td>23.7</td>
<td>94.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>8</td>
<td>25.9</td>
<td>92.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>7</td>
<td>25.8</td>
<td>96.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>9</td>
<td>25.0</td>
<td>95.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>7</td>
<td>27.3</td>
<td>94.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>8</td>
<td>26.7</td>
<td>93.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>7</td>
<td>25.8</td>
<td>92.4</td>
<td></td>
<td>Lane failed due to rutting at 30 coverages</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>9</td>
<td>23.3</td>
<td>90.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>8</td>
<td>25.7</td>
<td>94.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>8</td>
<td>25.9</td>
<td>92.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>0</td>
<td>8</td>
<td>22.7</td>
<td>96.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>12</td>
<td>25.5</td>
<td>96.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>15**</td>
<td>24.0</td>
<td>98.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>12</td>
<td>26.1</td>
<td>95.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Subgrade material was heavy clay (buckshot; classified as CII) in all lanes.

* All lanes were unsurfaced.

** Excessively high value; disregarded in computing rated CBR.

Approved for Public Release
Figure 1. Load vehicle used on lanes 13 and 14

Figure 2. Load vehicle used on lanes 15 and 16
Figure 3. Lane 13 prior to traffic

Figure 4. Lane 13: general view showing transverse straightedge measurement at 70 coverages (failure)
Figure 5. Lane 1¼ prior to traffic

Figure 6. Lane 1½; general view showing transverse straightedge measurement at 200 coverages (failure)
Figure 7. Lane 15 prior to traffic

Figure 8. Lane 15; general view showing transverse straightedge measurement at 100 coverages (Failure)
Figure 9. Lane 16 prior to traffic

Figure 10. General view of lane 16 after 32 coverages (failure)
NOTE: ALL LINES WERE UNSURFACED.

LAYOUT OF TEST SECTION 7 AND
SUMMARY OF TEST RESULTS

Figure 11
Figure 13

TRAFFIC DISTRIBUTION PATTERNS
TEST SECTION 7
LANES 13, 14, 15, AND 16

NOTE: 50 PERCENT OF TRAFFIC APPLIED.
CONTRAILS

AVERAGE TOTAL SOIL DEFLECTIONS
TEST SECTION 7
LANES 13, 14, 15, AND 16

Figure 16
Contrails
Aircraft Ground-Flotation Investigation
Part VIII Data Report on Test Section 7

Final Technical Report

Author(s) (Last Name, First Name, Initial)
Brabston, W. N.,
Hill, W. J., Jr.

Report Date
August 1966

Total No. of Pages
23

Originator's Report Numbers
AFSDL-TR-58-45, Part VIII.

Other Report Numbers
None

Availability/Limitation Notices
This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of the Air Force Flight Dynamics Laboratory (AFDNL), Wright-Patterson AFB, Ohio 45433.

Supplementary Notes

Sponsoring Military Activity
Air Force Flight Dynamics Laboratory
Research and Technology Division
AF Systems Command, WPAFB, Ohio

Abstract
This data report describes the results of work undertaken as part of an overall program to develop ground-flotation criteria for the C-5A aircraft.
Aircraft Ground Floation
Rolling Resistance
Rear Area Airfields
Support Area Airfields
Forward Area Airfields
Vehicle Mobility

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2. REPORT SECURITY CLASSIFICATION: Enter the open security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

3. GROUP: Automate designating is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

4. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

5. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

6. AUTHORS: Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, also rank and branch of service. The name of the principal author is an absolute minimum requirement.

7. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, state date of publication.

8. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

9. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

10. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

11. A. & B. REPORT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

12. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document is referred to and controlled by the originating activity. This number must be assigned by the originator. No report may be assigned another or any report number.

13. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (other than by the originator or by the sponsor), also enter the number(s).

14. VAILABILITY/CLASSIFICATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 (1) "Qualified requesters may obtain copies of this report from DOD."

 (2) "Foreign announcement and dissemination of this report by DOD is not authorized."

 (3) "U.S. Government agencies may obtain copies of this report directly from DOD. Other qualified DOD users shall request through"

 (4) "U.S. military agencies may obtain copies of this report directly from DOD. Other qualified users shall request through"

 (5) "All distribution of this report is controlled. Qualified DOD users shall request through"

15. If the report has been published by the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

16. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

17. SPONSORING MILITARY ACTIVITY: Enter the name of the sponsoring military department or service (for the research work development. Include address.

18. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be declassified. Each paragraph of the abstract shall be with an indication of the military security classification of the information in the paragraph, represented as (S), (C), or (O).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

19. KEY WORDS: Key words are technically meaningful terms in some phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected in consultation with classified identification in requiring military, such as equipment model designation, indicate same, military project code or number, appropriate translations, and as key words but with only an indication of technical context. The assignment of links, rules, or weights is optional.